Erkenntnis

, Volume 80, Issue 3, pp 487–503 | Cite as

Logicism as Making Arithmetic Explicit

Original Article
  • 147 Downloads

Abstract

This paper aims to shed light on the broader significance of Frege’s logicism (and hence the phenomenon of modern logic) against the background of discussing and comparing Wittgenstein’s ‘showing/saying’-distinction with Brandom’s idiom of logic as the enterprise of making the implicit rules of our linguistic practices (something we do) explicit (by something we say). The main thesis of this paper is that the problem of Frege’s logicism lies deeper than in its inconsistency (which has since turned out to be reparable, as the neologicists have shown): it lies in the basic idea that in arithmetic (and prospectively in language in general) one can, and should, express everything that is implicitly presupposed so that nothing is left unsaid. This, in fact, is the target of Wittgenstein’s critique. Rather than the Tractatus, with its claim that logicism attempts to say something that can only be shown (e.g. what ‘object’, ‘function’ or ‘number’ are), it is the Philosophical Investigations, with its argument by regress against the thesis that every rule which one can follow must be of an explicit nature, that is of real significance here.

References

  1. Bolzano, B. (1851). Paradoxien des Unendlichen. Leipzig: Reclam.Google Scholar
  2. Boolos, G. (1987). The consistency of Frege’s ‘Foundations of Arithmetic’. In J. J. Thompson (Ed.), On being and saying. Essays for Richard Cartwright (pp. 3–20). Cambridge, MA: MIT Press.Google Scholar
  3. Brandom, R. (1994). Making it explicit. Reasoning, representing, and discursive commitment. Cambridge, MA: Harvard University Press.Google Scholar
  4. Brandom, R. (2008a). Between saying and doing. Towards an analytic pragmatism. Oxford: Oxford University Press.CrossRefGoogle Scholar
  5. Brandom, R. (2008b). Responses. In P. Stekeler-Weithofer (Ed.), The pragmatics of making it explicit (pp. 209–230). Amsterdam: John Benjamin.CrossRefGoogle Scholar
  6. Brouwer, L. E. J. (1907). Over de grondslagen der wiskunde. Amsterdam: Universiteit Amsterdam.Google Scholar
  7. Carroll, L. (1895). What the tortoise said to achilles. Mind, 3, 278–280.CrossRefGoogle Scholar
  8. Fine, K. (2002). The limits of abstraction. Oxford: Oxford University Press.Google Scholar
  9. Frege, G. (1879). Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle: L. Nebert.Google Scholar
  10. Frege, G. (1884). Die Grundlagen der Arithmetik. Eine logisch mathematische Untersuchung über den Begriff der Zahl. Breslau: W. Koebner.Google Scholar
  11. Frege, G. (1893/1903). Grundgesetze der Arithmetik. Begriffsschriftlich abgeleitet I–II. Jena: H. Pohle.Google Scholar
  12. Frege, G. (1983). Nachgelassene Schriften (2nd ed.). Hamburg: Felix Meiner.Google Scholar
  13. Hale, B., & Wright, C. (2001). The reason’s proper study. Essays towards a Neo-Fregean philosophy of mathematics. Oxford: Oxford University Press.Google Scholar
  14. Kamlah, W., & Lorenzen, P. (1967). Logische Propädeutik. Vorschule des vernünftigen Redens. Mannheim: Bibliographisches Institut.Google Scholar
  15. Kolman, V. (2005). Lässt sich der Logizismus retten? Allgemeine Zeitschrift für Philosophie, 30, 159–174.Google Scholar
  16. Kolman, V. (2010). Continuum, name, paradox. Synthese, 175, 351–367.CrossRefGoogle Scholar
  17. Kripke, S. (1982). Wittgenstein on rules and private language. An elementary exposition. Cambridge, MA: Harvard University Press.Google Scholar
  18. Lakatos, I. (1978). Cauchy and the continuum: The significance of non-standard analysis for the history and philosophy of mathematics. Mathematical Intelligencer, 1, 151–161.CrossRefGoogle Scholar
  19. Lorenzen, P. (1955). Einführung in die operative Logik und Mathematik. Berlin: Springer.CrossRefGoogle Scholar
  20. Lorenzen, P., & Lorenz, K. (1978). Dialogische Logik. Darmstadt: Wissenschaftliche Buchgesellschaft.Google Scholar
  21. McDowell, J. (2008). Motivating inferentialism: Comments on making it explicit (Ch. 2). In P. Stekeler-Weithofer (Ed.), The pragmatics of making it explicit (pp. 109–126). Amsterdam: John Benjamin.CrossRefGoogle Scholar
  22. Odifreddi, P. (1989). Classical recursion theory. The theory of functions and sets of natural numbers. Amsterdam: North-Holland.Google Scholar
  23. Poincaré, H. (1908). Science et méthode. Paris: Flammarion.Google Scholar
  24. Potter, M. (2000). Reason’s nearest kin. Philosophies of arithmetic from Kant to Carnap. Oxford: Oxford University Press.Google Scholar
  25. Potter, M. (2008). Wittgenstein’s notes on logic. Oxford: Oxford University Press.CrossRefGoogle Scholar
  26. Quine, W. V. O. (1953). From a logical point of view. Cambridge, MA: Harvard University Press.Google Scholar
  27. Ramsey, F. P. (1931). The foundations of mathematics and other logical essays. London: Routledge.Google Scholar
  28. Russell, B. (1905). On denoting. Mind, 14, 479–493.CrossRefGoogle Scholar
  29. Russell, B. (1920). Introduction to mathematical philosophy. London: George Allen & Unwin.Google Scholar
  30. Russell, B., & Whitehead, A. N. (1910–1913). Principia Mathematica. Cambridge: Cambridge University Press.Google Scholar
  31. Stekeler-Weithofer, P. (1986). Grundprobleme der Logik. Berlin: de Gryuter.CrossRefGoogle Scholar
  32. Wittgenstein, L. (1922). Tractatus logico-philosophicus. London: Routledge & Kegan Paul.Google Scholar
  33. Wittgenstein, L. (1953). Philosophical investigations. Oxford: Blackwell.Google Scholar
  34. Wittgenstein, L. (1964). Philosophical remarks. Oxford: Blackwell.Google Scholar
  35. Wittgenstein, L. (1974). Philosophical grammar. Oxford: Blackwell.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Faculty of Arts, Institute of Philosophy and Religious StudiesCharles University, PraguePrague 1Czech Republic

Personalised recommendations