Beth, E. W. (1953). On Padoa’s method in the theory of definition. Indagationes Mathematicæ, 15, 330–339.
Google Scholar
Carnap, R. (1958). Introduction to logic and its applications. New York: Dover.
Google Scholar
da Costa, N. C. A., & Chuaqui, R. (1988). On Suppes’ set theoretical predicates. Erkenntnis, 29, 95–112.
Article
Google Scholar
da Costa, N. C. A., & Doria, F. A. et al. (1992). Suppes predicates for classical physics. In J. Echeverria (Ed.), The space of mathematics (pp. 168–191). Berlin: Walter de Gruyer.
Google Scholar
da Costa, N. C. A., & Sant’Anna, A. S. (2001). The mathematical role of time and spacetime in classical physics. Foundations of Physics Letters, 14, 553–563.
Article
Google Scholar
da Costa, N. C. A., & Sant’Anna, A. S. (2002). Time in thermodynamics. Foundations of Physics, 32, 1785–1796.
Article
Google Scholar
Goldstein, H. (1980). Classical mechanics. Reading: Addison-Wesley.
Google Scholar
Haag, R. (1992). Local quantum physics: fields, particles, algebras. Berlin: Springer.
Book
Google Scholar
Jackson, J. D. (1975). Classical electrodynamics. New York: Wiley.
Google Scholar
Jenč, F., Maass, W, Melsheimer, O., & Neumann, H, van der Merwe, A. (1983). Gunther Ludwig and the foundations of physics. Foundations of Physics, 13, 639–641.
Article
Google Scholar
Johnstone, P. T. (1977). Topos theory. New York: Academic Press.
Google Scholar
Mac Lane, S. (1994). Categories for the working mathematician. New York: Springer.
Google Scholar
McKinsey, J. C. C., Sugar, A. C., & Suppes, P. (1953). Axiomatic foundations of classical particle mechanics. Journal of Rational Mechanics and Analysis, 2, 253–272.
Google Scholar
Mendelson, E. (1997). Introduction to mathematical logic. London: Chapman & Hall.
Google Scholar
Padoa, A. (1900). Essai d’une théorie algébrique des nombres entiers, précédé d’une introduction logique à une théorie déductive quelconque. Bibliothèque du Congrès International de Philosophie, 3, 309–365.
Google Scholar
Peirce, B. (1991). Basic category theory for computer scientists. Cambridge: MIT Press.
Google Scholar
Sant’Anna, A. S., & de Freitas, D. C. (2000). The statistical behavior of the quantum vacuum virtual photons in the Casimir effect. International Journal of Applied Mathematics, 2, 283–290.
Google Scholar
Suppes, P. (1957). Introduction to logic. Princeton: van Nostrand.
Google Scholar
Suppes, P. (2002). Representation and invariance of scientific structures. CSLI, Stanford.
Suppes, P., Sant’Anna, A.S., & de Barros, J.A. (1996). A particle theory of the Casimir effect. Foundations of Physics Letters, 9, 213–223.
Article
Google Scholar
Tarski, A. (1983). Some methodological investigations on the definability of concepts. In A. Tarski (Ed.), Logic, semantics, metamathematics (pp. 296–319). Indianapolis: Hacket.
Google Scholar
von Neumann, J. (1967). An axiomatization of set theory. In J. Heijenoort (Ed.), From Frege to Gödel (pp. 346–354). Cambridge: Harvard University Press.
Google Scholar