Erkenntnis

, Volume 78, Issue 3, pp 699–712 | Cite as

“Spurious Correlations and Causal Inferences”

Original Article

Abstract

The failure to recognize a correlation as spurious can lead people to adopt strategies to bring about a specific outcome that manipulate something other than a cause of the outcome. However, in a 2008 paper appearing in the journal Analysis, Bert Leuridan, Erik Weber and Maarten Van Dyck suggest that knowledge of spurious correlations can, at least sometimes, justify adopting a strategy aiming at bringing about some change. This claim is surprising and, if true, throws into question the claim of Nancy Cartwright and others that knowledge of laws of association is insufficient for distinguishing effective and ineffective strategies. This paper examines the nature of spurious correlations and their value in crafting strategies for change. The conclusion of the paper is that while knowledge of a spurious correlation may have practical value, the value depends on either having knowledge of the causal structure underlying the correlation or it depends on the use of ‘causal criteria’.

References

  1. Aldrich, J. (1995). Correlations genuine and spurious in Pearson and yule. Statistical Science, 10(4), 364–376.Google Scholar
  2. Blalock, H. M, Jr. (1962). Spuriousness versus intervening variables: The problem of temporal sequences. Social Forces, 40(4), 330–336.CrossRefGoogle Scholar
  3. Blalock, H. M., Jr. (1985). Causal models in the social sciences (second.). New York, NY: Aldine de Gruyter.Google Scholar
  4. Brett, M. T. (2004). When is a correlation between non-independent variables “spurious”? Oikos, 105(3), 647–656. doi:10.1111/j.0030-1299.2004.12777.x.CrossRefGoogle Scholar
  5. Burns, W. C. (1997). Spurious correlations. Retrieved from http://www.burns.com/wcbspurcorl.htm.
  6. Cartwright, N. (1983). Causal laws and effective strategies. How the laws of physics lie (pp. 21–43). Oxford: Clarendon Press.Google Scholar
  7. Cartwright, N. (2002). Nature’s capacities and their measurement. Oxford: Clarendon Press.Google Scholar
  8. Conner, J. K. (2003). Artificial selection: A powerful tool for ecologists. Ecology, 84(7), 1650–1660.CrossRefGoogle Scholar
  9. Cox, D. R. (1958). Some problems connected with statistical inference. The Annals of Mathematical Statistics, 29(2), 357–372.CrossRefGoogle Scholar
  10. Elster, J. (1983). Explaining technical change. Cambridge: Cambridge University Press.Google Scholar
  11. Farber, B. (1963). Response falsification and spurious correlation in survey research. American Sociological Review, 28(1), 123–130.CrossRefGoogle Scholar
  12. Field, H. (2005). Causation in a Physical World. In M. J. Loux & Dean W. Zimmerman (Eds.), The Oxford handbook of metaphysics (pp. 435–460). Oxford: Oxford University Press.Google Scholar
  13. Fletcher, R. H., & Fletcher, S. W. (2005). Clinical epidemiology: The essentials. Philadelphia, PA: Lippincott and Wilkins.Google Scholar
  14. Granger, C. W. J., & Newbold, P. (1974). Spurious regressions in econometrics. Journal of Econometrics, 2(2), 111–120. doi:10.1016/0304-4076(74)90034-7.CrossRefGoogle Scholar
  15. Haig, B. D. (2003). What is a spurious correlation? Understanding Statistics, 2(2), 125–132.CrossRefGoogle Scholar
  16. Hausman, D. M. (1986). Causation and experimentalism. American Philosophical Quarterly, 23(2), 143–154.Google Scholar
  17. Hausman, D. M. (1998). Causal asymmetries. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  18. Hill, A. B. (1965). The environment and disease: Association or causation? Proceedings of the Royal Society of Medicine, 58(5), 295–300.Google Scholar
  19. Hitchcock, C. (2007). Three concepts of causation. Philosophy Compass, 2(3), 508–516. doi:10.1111/j.1747-9991.2007.00084.x.CrossRefGoogle Scholar
  20. Hitchcock, C., & Knobe, J. (2009). Cause and norm. The Journal of Philosophy, 106(11), 587–612.Google Scholar
  21. Hoover, K. D. (2001). Causality in microeconomics. Cambridge: Cambridge University Press.Google Scholar
  22. Hubbell, C. L. (1985). Beware the spurious correlation. Science News, 128(11), 163.CrossRefGoogle Scholar
  23. Humphreys, P. (1989). The chances of explanation. Princeton, NJ: Princeton University Press.Google Scholar
  24. Jackson, D. A., & Somers, K. M. (1991). The spectre of “spurious” correlations. Oecologia, 86(1), 147–151.CrossRefGoogle Scholar
  25. Kenny, D. A. (1979). Correlation and causality. New York, NY: Wiley.Google Scholar
  26. Leuridan, B., & Weber, E. (2011). The IARC and mechanistic evidence. In P. M. Illari, F. Russo, & J. Williamson (Eds.), Causality in the sciences (pp. 91–109). New York, NY: Oxford University Press.CrossRefGoogle Scholar
  27. Leuridan, B., Weber, E., & Van Dyck, M. (2008). The practical value of spurious correlations: Selective versus manipulative policy. Analysis, 68, 298–303.CrossRefGoogle Scholar
  28. Pearl, J. (2001). Causality: Models, reasoning, and inference. Cambridge: Cambridge University Press.Google Scholar
  29. Prairie, Y. T., & Bird, D. F. (1989). Some misconceptions about the spurious correlation problem in the ecological literature. Oecologia, 81(2), 285–288.Google Scholar
  30. Prather, J. E. (1988). Spurious correlation. Encyclopedia of statistical science. New York, NY: Wiley.Google Scholar
  31. Russo, F., & Williamson, J. (2007). Interpreting causality in the health sciences. International Studies in the Philosophy of Science, 21(2), 157–170.CrossRefGoogle Scholar
  32. Salmon, W. C. (1998). Causality and explanation. New York, NY: Oxford University Press.CrossRefGoogle Scholar
  33. Shipley, B. (1999). Testing causal explanations in organismal biology: Causation, Correlation and Structural Equation Modelling. Oikos, 86(2), 374–382.CrossRefGoogle Scholar
  34. Simon, H. A. (1954). Spurious correlation: A causal interpretation. Journal of the American Statistical Association, 49(267), 467–479.Google Scholar
  35. Sober, E. (1984a). The nature of selection: evolutionary theory in philosophical focus. Cambridge, MA: Bradford Books/MIT Press.Google Scholar
  36. Sober, E. (1984b). Common cause explanation. Philosophy of Science, 51(2), 212–241.CrossRefGoogle Scholar
  37. Spirtes, P., Glymour, C., & Scheines, R. (2000). Causation, prediction, and search (second.). Cambridge, MA: MIT Press.Google Scholar
  38. Stigler, S. (2005). Correlation and causation: A comment. Perspectives in Biology and Medicine, 48(1), s88–s94.CrossRefGoogle Scholar
  39. Stroe-Kunold, E., & Werner, J. (2009). A drunk and her dog: A spurious correlation? Cointegration tests as instruments to detect spurious correlations between integrated time series. Quality & Quantity, 43(6), 913–940. doi:10.1007/s11135-008-9168-9.CrossRefGoogle Scholar
  40. Suppes, P. (1970). A probabilistic theory of causality. Amsterdam: North-Holland Publishing Company.Google Scholar
  41. Ward, A. C. (2009). The role of causal criteria in causal inferences: Bradford Hill’s “Aspects of Association.” Epidemiologic Perspectives and Innovations, 6(2). doi:10.1186/1742-5573-6-2.
  42. Williamson, J. (2005). Bayesian nets and causality: Philosophical and computational foundations. Oxford: Oxford University Press.Google Scholar
  43. Woods, J., & Walton, D. (1977). Post Hoc, Ergo Propter Hoc. The Review of Metaphysics, 30(4), 569–593.Google Scholar
  44. Woodward, J. (2003). Making things happen: A theory of causal explanation. New York, NY: Oxford University Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Division of Health Policy and Management, School of Public HealthUniversity of MinnesotaMinneapolisUSA

Personalised recommendations