Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond
- 911 Downloads
- 25 Citations
Abstract
Many historians of the calculus deny significant continuity between infinitesimal calculus of the seventeenth century and twentieth century developments such as Robinson’s theory. Robinson’s hyperreals, while providing a consistent theory of infinitesimals, require the resources of modern logic; thus many commentators are comfortable denying a historical continuity. A notable exception is Robinson himself, whose identification with the Leibnizian tradition inspired Lakatos, Laugwitz, and others to consider the history of the infinitesimal in a more favorable light. Inspite of his Leibnizian sympathies, Robinson regards Berkeley’s criticisms of the infinitesimal calculus as aptly demonstrating the inconsistency of reasoning with historical infinitesimal magnitudes. We argue that Robinson, among others, overestimates the force of Berkeley’s criticisms, by underestimating the mathematical and philosophical resources available to Leibniz. Leibniz’s infinitesimals are fictions, not logical fictions, as Ishiguro proposed, but rather pure fictions, like imaginaries, which are not eliminable by some syncategorematic paraphrase. We argue that Leibniz’s defense of infinitesimals is more firmly grounded than Berkeley’s criticism thereof. We show, moreover, that Leibniz’s system for differential calculus was free of logical fallacies. Our argument strengthens the conception of modern infinitesimals as a development of Leibniz’s strategy of relating inassignable to assignable quantities by means of his transcendental law of homogeneity.
Keywords
Status Transitus Transfer Principle Null Sequence Infinite Divisibility Infinitesimal CalculusNotes
Acknowledgments
We are grateful to H. Jerome Keisler for helpful remarks that helped improve an earlier version of the manuscript. The influence of Hilton Kramer (1928–2012) is obvious.
References
- Albeverio, S., Høegh-Krohn, R., Fenstad, J., & Lindstrøm, T. (1986). Nonstandard methods in stochastic analysis and mathematical physics. Pure and Applied Mathematics, 122. Orlando, FL: Academic Press, Inc.Google Scholar
- Andersen, K. (2011). One of Berkeley’s arguments on compensating errors in the calculus. Historia Mathematica, 38(2), 219–231.CrossRefGoogle Scholar
- Anderson, R. (1976). A non-standard representation for Brownian motion and Itô integration. Israel Journal of Mathematics, 25(1–2), 15–46.CrossRefGoogle Scholar
- Arkeryd, L. (1981). Intermolecular forces of infinite range and the Boltzmann equation. Archive for Rational Mechanics and Analysis, 77(1), 11–21.CrossRefGoogle Scholar
- Arkeryd, L. (2005). Nonstandard analysis. American Mathematical Monthly, 112(10), 926–928.CrossRefGoogle Scholar
- Arthur, R. (2007). Leibniz’s syncategorematic infinitesimals, Smooth Infinitesimal Analysis, and Newton’s Proposition 6. See http://www.humanities.mcmaster.ca/∼rarthur/papers/LsiSiaNp6.rev.pdf.
- Bair, J., & Henry, V. (2010). Implicit Differentiation with Microscopes. The Mathematical Intelligencer, 32(1), 53–55.CrossRefGoogle Scholar
- Beeley, P. (2008). Infinity, Infinitesimals, and the Reform of Cavalieri: John Wallis and his Critics. In Goldenbaum and Jesseph (2008) (pp. 31–52).Google Scholar
- Bell, E.T. (1945). The Development of Mathematics. New York: McGraw-Hill Book Company, Inc.Google Scholar
- Bell, J. L. (2008). A primer of infinitesimal analysis. 2 edn. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
- Bell, J. L. (2009). Continuity and infinitesimals. Stanford Encyclopedia of philosophy.Google Scholar
- Berkeley, G. (1734). The Analyst, a Discourse Addressed to an Infidel Mathematician.Google Scholar
- Berkeley, G. (1948). Works, vol. 1, ed. Luce and Jessop. London: T. Nelson & Sons.Google Scholar
- Błasczcyk, P., Katz, M., & Sherry, D. (2012). Ten misconceptions from the history of analysis and their debunking. Foundations of Science. See http://dx.doi.org/10.1007/s10699-012-9285-8 and http://arxiv.org/abs/1202.4153.
- Borovik, A., Jin, R., & Katz, M. (2012) An integer construction of infinitesimals: Toward a theory of Eudoxus hyperreals. Notre Dame Journal of Formal Logic, 53(4).Google Scholar
- Borovik, A., & Katz, M. (2011) Who gave you the Cauchy–Weierstrass tale? The dual history of rigorous calculus. Foundations of Science, see http://dx.doi.org/10.1007/s10699-011-9235-x and http://arxiv.org/abs/1108.2885.
- Bos, H. J. M. (1974). Differentials, higher-order differentials and the derivative in the Leibnizian calculus. Archive for History of Exact Sciences, 14, 1–90.CrossRefGoogle Scholar
- Bourbaki, N. (1960). Eléments d’histoire des mathématiques. Histoire de la Pensée, IV. Paris: Hermann.Google Scholar
- Boyer, C. (1949). The concepts of the calculus. Hafner Publishing Company.Google Scholar
- Boyer, C. (1959). The history of the calculus and its conceptual development. New York: Dover Publications, Inc.Google Scholar
- Bråting, K. (2007). A new look at E. G. Björling and the Cauchy sum theorem. Archive for History of Exact Sciences, 61(5), 519–535.CrossRefGoogle Scholar
- Burgess, J. (1983). Why I am not a nominalist. Notre Dame Journal of Formal Logic, 24(1), 93–105.CrossRefGoogle Scholar
- Cajori, F. (1917). Discussion of Fluxions: From Berkeley to Woodhouse. American Mathematical Monthly, 24(4), 145–154.CrossRefGoogle Scholar
- Carchedi, G. (2008). Dialectics and Temporality in Marx’s Mathematical Manuscripts. Science & Society, 72(4), 415–426.CrossRefGoogle Scholar
- Cauchy, A. L. (1821). Cours d’Analyse de L’Ecole Royale Polytechnique. Première Partie. Analyse algébrique. Paris: Imprimérie Royale.Google Scholar
- Cauchy, A. L. (1853). Note sur les séries convergentes dont les divers termes sont des fonctions continues d’une variable réelle ou imaginaire, entre des limites données. In: Oeuvres complètes, Series 1, Vol. 12 (pp. 30–36). Paris: Gauthier–Villars (1900).Google Scholar
- Child, J. M. (Ed.). (1920). The early mathematical manuscripts of Leibniz. (Translated from the Latin texts published by Carl Immanuel Gerhardt with critical and historical notes by J. M. Child). Chicago-London: The Open Court Publishing Co.Google Scholar
- Cutland, N., Kessler, C., Kopp, E., & Ross, D. (1988). On Cauchy’s notion of infinitesimal. The British Journal for the Philosophy of Science, 39(3), 375–378.CrossRefGoogle Scholar
- De Morgan, A. (1852). On the early history of infinitesimals in England. Philosophical Magazine, Series 4, 4(26), 321–330. See http://www.tandfonline.com/doi/abs/10.1080/14786445208647134.
- Dossena, R., & Magnani, L. (2007). Mathematics through diagrams: Microscopes in non-standard and smooth analysis. Studies in Computational Intelligence (SCI), 64, 193–213.CrossRefGoogle Scholar
- Earman, J. (1975). Infinities, infinitesimals, and indivisibles: The Leibnizian labyrinth. Studia Leibnitiana, 7(2), 236–251.Google Scholar
- Edwards Jr., C.H. (1979). The historical development of the calculus. New York: Springer.CrossRefGoogle Scholar
- Ehrlich, P. (2006). The rise of non-Archimedean mathematics and the roots of a misconception. I. The emergence of non-Archimedean systems of magnitudes. Arch. Hist. Exact Sci., 60(1), 1–121.CrossRefGoogle Scholar
- Ehrlich, P. (2012). The absolute arithmetic continuum and the unification of all numbers great and small. Bulletin of Symbolic Logic, 18(1), 1–45.CrossRefGoogle Scholar
- Ely, R. (2010). Nonstandard student conceptions about infinitesimals. Journal for Research in Mathematics Education, 41(2), 117–146.Google Scholar
- Euler, L. (1770). Elements of algebra. Translated from the German by John Hewlett. Reprint of the 1840 edition. With an introduction by C. Truesdell. New York: Springer.Google Scholar
- Fearnley-Sander, D. (1979). Hermann Grassmann and the creation of linear algebra. American Mathematical Monthly, 86(10), 809–817.CrossRefGoogle Scholar
- Ferraro, G. (2008). The rise and development of the theory of series up to the early 1820s. Sources and Studies in the History of Mathematics and Physical Sciences. New York: Springer.Google Scholar
- Fraenkel, A. (1946). Einleitung in die Mengenlehre. New York, N.Y.: Dover (originally published by Springer, Berlin, 1928).Google Scholar
- Fraenkel, A. (1966). Abstract set theory. Third revised edition. Amsterdam: North-Holland.Google Scholar
- Freudenthal, H. (1971). Cauchy, Augustin-Louis. In: C. C. Gillispie (Ed.). Dictionary of scientific biography, vol. 3 (pp. 131–148). New York: Charles Scribner’s sons.Google Scholar
- Fowler, D. (1992). Dedekind’s theorem: \(\sqrt 2\times\sqrt 3=\sqrt 6\). American Mathematical Monthly, 99(8), 725–733.CrossRefGoogle Scholar
- Gerhardt, C. I. (Ed.). (1846). Historia et Origo calculi differentialis a G. G. Leibnitio conscripta. In C. I. Gerhardt (Ed.), Hannover.Google Scholar
- Gerhardt, C. I. (Ed.). (1850–1863). Leibnizens mathematische Schriften. Berlin and Halle: Eidmann.Google Scholar
- Gerhardt C. I. (Ed.). (1875–1990). G. W. Leibniz: Philosophische Schriften. In C. I. Gerhardt (Ed.). 7 vols. Reprint, Hildesheim: Georg Olms Verlag, 1962.Google Scholar
- Gillispie, C. C. (1971). Lazare Carnot, savant. A monograph treating Carnot’s scientific work, with facsimile reproduction of his unpublished writings on mechanics and on the calculus, and an essay concerning the latter by A. P. Youschkevitch. Princeton, N.J.: Princeton University Press.Google Scholar
- Giordano, P., & Katz, M. (2011). Two ways of obtaining infinitesimals by refining Cantor’s completion of the reals. Preprint, see http://arxiv.org/abs/1109.3553.
- Goldenbaum, U., & Jesseph, D. (Eds.). (2008). Infinitesimal Differences: Controversies between Leibniz and his Contemporaries. Berlin: Walter de Gruyter (reviewed by Monnoyeur-Broitman 2010).Google Scholar
- Grabiner, J. (1981). The origins of Cauchy’s rigorous calculus. Cambridge, MA: MIT Press.Google Scholar
- Grattan-Guinness, I. (2004). The mathematics of the past: Distinguishing its history from our heritage. Historia Mathematica, 31, 163–185.CrossRefGoogle Scholar
- Gray, J. (2008). Plato’s ghost. The modernist transformation of mathematics. Princeton, NJ: Princeton University Press.Google Scholar
- Hawking, S. (Ed.). (2007). The mathematical breakthroughs that changed history., Philadelphia, PA: Running Press. (originally published 2005).Google Scholar
- Hewitt, E. (1948). Rings of real-valued continuous functions. I. Transactions on American Mathematical Society, 64, 45–99.CrossRefGoogle Scholar
- Horváth, M. (1986). On the attempts made by Leibniz to justify his calculus. Studia Leibnitiana, 18(1), 60–71.Google Scholar
- Ishiguro, H. (1990). Leibniz’s philosophy of logic and language, 2 edn. Cambridge: Cambridge University Press.Google Scholar
- Jesseph, D. (1993). Berkeley’s philosophy of mathematics. Science and its Conceptual Foundations. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
- Jesseph, D. (2005). George Berkeley, the analyst (1734). In: I. Grattan-Guinness (Ed.), Landmark writings in western mathematics (pp. 1640–1940). Elsevier B. V., Amsterdam.Google Scholar
- Jesseph, D. (2011). Leibniz on the elimination of infinitesimals: Strategies for finding truth in fiction, 27 pages. In N. B. Goethe, P. Beeley, & D. Rabouin (Eds.), Leibniz on the interrelations between mathematics and philosophy, Archimedes Series. Springer (to appear).Google Scholar
- Jorgensen, L. (2009). The principle of continuity and Leibniz’s theory of consciousness. Journal of the History of Philosophy, 47(2), 223–248.CrossRefGoogle Scholar
- Katz, K., & Katz, M. (2010a). Zooming in on infinitesimal 1−9. in a post-triumvirate era. Educational Studies in Mathematics, 74(3), 259–273. See http://arxiv.org/abs/1003.1501.
- Katz, K., & Katz, M. (2010b). When is .999… less than 1? The Montana Mathematics Enthusiast, 7(1), 3–30.Google Scholar
- Katz, K., & Katz, M. (2012). A Burgessian critique of nominalistic tendencies in contemporary mathematics and its historiography. Foundations of Science, 17(1), 51–89. See http://dx.doi.org/10.1007/s10699-011-9223-1 and http://arxiv.org/abs/1104.0375.
- Katz, K., & Katz, M. (2011a). Cauchy’s continuum. Perspectives on Science, 19(4), 426–452. See http://arxiv.org/abs/1108.4201 and http://www.mitpressjournals.org/doi/abs/10.1162/POSC_a_00047.
- Katz, K., & Katz, M. (2011b) Stevin numbers and reality. Foundations of Science, see http://arxiv.org/abs/1107.3688 and http://dx.doi.org/10.1007/s10699-011-9228-9.
- Katz, K., & Katz, M. (2011c). Meaning in classical mathematics: Is it at odds with Intuitionism? Intellectica, 56(2), 223–302. See http://arxiv.org/abs/1110.5456.
- Katz, M., & Leichtnam, E. Commuting and non-commuting infinitesimals. American Mathematical Monthly. (to appear).Google Scholar
- Katz, M., & Tall, D. (2011). The tension between intuitive infinitesimals and formal mathematical analysis. In B. Sriraman (Ed.) Crossroads in the history of mathematics and mathematics education. The Montana Mathematics Enthusiast Monographs in Mathematics Education 12, Information Age Publishing, Inc., Charlotte, NC. See http://arxiv.org/abs/1110.5747 and http://www.infoagepub.com/products/Crossroads-in-the-History-of-Mathematics.
- Keisler, H. J. (1976). Foundations of infinitesimal Calculus. Instructor’s manual. Prindle, Weber & Schmidt. See http://www.math.wisc.edu/∼keisler/foundations.html.
- Keisler, H. J. (1986). Elementary calculus: An infinitesimal approach. (2nd ed). Boston: Prindle, Weber & Schimidt. See http://www.math.wisc.edu/∼keisler/calc.html.
- Kennedy, H. (1977). Karl Marx and the foundations of differential calculus. Historia Mathematica, 4(3), 303–318.CrossRefGoogle Scholar
- Klein, F. Elementary Mathematics from an advanced standpoint. Vol. I. Arithmetic, Algebra, Analysis. Translation by E. R. Hedrick and C. A. Noble (Macmillan, New York, 1932) from the third German edition (Springer, Berlin, 1924). Originally published as Elementarmathematik vom höheren Standpunkte aus (Leipzig, 1908).Google Scholar
- Kline, M. (1972). Mathematical thought from ancient to modern times. New York: Oxford University Press.Google Scholar
- Knobloch, E. (2000). Archimedes, Kepler, and Guldin: The role of proof and analogy. pp. 82–100 in Thiele (2000).Google Scholar
- Knobloch, E. (2002). Leibniz’s rigorous foundation of infinitesimal geometry by means of Riemannian sums. Foundations of the formal sciences, 1 (Berlin, 1999). Synthese, 133(1–2), 59–73.CrossRefGoogle Scholar
- Laugwitz, D. (1987). Infinitely small quantities in Cauchy’s textbooks. Historia Mathematica, 14(3), 258–274.CrossRefGoogle Scholar
- Laugwitz, D. (1989). Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820. Archive for History of Exact Sciences, 39(3), 195–245.CrossRefGoogle Scholar
- Laugwitz, D. (1992a). Leibniz’ principle and omega calculus. In [A] Le labyrinthe du continu, Colloq., Cerisy-la-Salle/Fr. 1990, pp. 144–154.Google Scholar
- Laugwitz, D. (1992b). Early delta functions and the use of infinitesimals in research. Revue d’Histoire des Sciences, 45(1), 115–128.CrossRefGoogle Scholar
- Lawvere, F.W. (1980). Toward the description in a smooth topos of the dynamically possible motions and deformations of a continuous body Third Colloquium on Categories (Amiens, 1980) Part I. Cahiers Topologie Géom. Différentielle, 21(4), 377–392.Google Scholar
- Levey, S. (2008). Archimedes, Infinitesimals and the Law of Continuity: On Leibniz’s Fictionalism. In Goldenbaum and Jesseph (2008) pp. 107–134.Google Scholar
- Leibniz, G. W. (2001). The Labyrinth of the Continuum (trans: Arthur, R., and ed.). New Haven: Yale University Press.Google Scholar
- Leibniz, G. W. (1993). De quadratura arithmetica circuli ellipseos et hyperbolae cujus corollarium est trigonometria sine tabulis, kritisch herausgegeben und kommentiert von Eberhard Knobloch, Göttingen (Abhandlungen der Akademie der Wissenschaften in Göttingen, Mathematisch-physikalische Klasse 3; 43).Google Scholar
- Leibniz, G. W. (2004). Quadrature arithmétique du cercle, de l’ellipse et de l’hyperbole, Marc Parmentier (trans: and Ed.)/Latin text Eberhard Knobloch (Ed.), Paris: J. Vrin.Google Scholar
- Leibniz, G. W. (1680). Elementa calculi novi … ab, in Gerhardt (1846).Google Scholar
- Leibniz, G. W. (1684). Nova methodus pro maximis et minimis … in Acta Erud. See Gerhardt 1850–1863, V, pp. 220–226.Google Scholar
- Leibniz, G. W. (1687). Letter of Mr. Leibniz on a general principle useful in explaining the laws of nature through a consideration of the divine wisdom; to serve as a reply to the response of the rev. father Malebranche. In Loemker (1956) pp. 351–354. The Latin original version in the Akademie edition (Leibniz 1999, series VI, Vol. 4C, pp. 2031–2039).Google Scholar
- Leibniz, G. W. (1695a). Letter to l’Hospital. In C. I. Gerhardt (1850–1863, Vol. II, pp. 287–289).Google Scholar
- Leibniz, G. W. (1695b). Letter to Huygens. In C. I. Gerhardt (1850–1863, Vol. II, pp. 205–208).Google Scholar
- Leibniz, G. W. (1695c). Letter to l’Hospital. In C. I. Gerhardt (1850–1863, Vol. II, pp. 302).Google Scholar
- Leibniz, G. W. (1698). Letter to Wallis. In C. I. Gerhardt (1850–1863, Vol. IV, p. 54).Google Scholar
- Leibniz, G. W. (1699). Letter to Wallis. In C. I Gerhardt (1850–1863, Vol. IV, pp. 62–65).Google Scholar
- Leibniz, G. W. (1700). Defense du calcul des differences, ab. LH XXXV, VoI. 22. (still unpublished).Google Scholar
- Leibniz, G. W. to Pinson, 29 Aug., 1701. In C. I. Gerhardt (1850–1863, IV, pp. 95–96).Google Scholar
- Leibniz, G. W. (1701a). Justification du Calcul des infinitesimales…. In Gerhardt (1850–1863, IV, pp. 104–106).Google Scholar
- Leibniz, G. W. (1701b) Cum Prodiisset … mss “Cum prodiisset atque increbuisset Analysis mea infinitesimalis …” in Gerhardt (1846, pp. 39–50). Online at http://books.google.co.il/books?id=UOM3AAAAMAAJ&source=gbs_navlinks_.
- Leibniz, G. W. (1702). Letter to Varignon, 2 Feb. 1702. In Gerhardt (1850–1863, vol. IV, pp. 91–95).Google Scholar
- Leibniz, G. W. Enclosure to letter to Varignon, 2 Feb., 1702. In Gerhardt (1850–1863, IV, pp. 104–105).Google Scholar
- Leibniz, G. W. (1710). Symbolismus memorabilis calculi algebraici et infinitesimalis in comparatione potentiarum et differentiarum, et de lege homogeneorum transcendentali. In Gerhardt (1850–1863, vol. V, pp. 377–382).Google Scholar
- Leibniz, G. W. (2008). Sämtliche Schriften und Briefe. Reihe VII. Mathematische Schriften. Band 4. 1670-1673. Infinitesimalmathematik. [Collected works and letters. Series VII. Mathematical writings. Vol. 4. 1670–1673. Infinitesimal mathematics] Edited by Walter S. Contro and Eberhard Knobloch. Berlin: Akademie-Verlag.Google Scholar
- Leibniz, G. W. (1999) Sämtliche Schriften und Briefe. Reihe VI. [Collected works and letters. Series VI] Philosophische Schriften. Vierter Band 1677–Juni 1690, Teil C. [Philosophical writings. Vol. 4, 1677–June 1690, Part C] Bearbeiter dieses Bandes: Heinrich Schepers, Martin Schneider, Gerhard Biller, Ursula Franke, Herma Kliege-Biller. Akademie-Verlag, Berlin, 1999. xvii+ pp. 1957–2949. See http://www.leibniz-edition.de/Baende/ReiheVI.htm.
- L’Huilier, S. (1786). Exposition élémentaire des principes des calculs supérieurs, qui a remporté le prix proposé par l’Académie Royale des Sciences et Belles-Lettres pour l’année. Berlin [1787].Google Scholar
- Lightstone, A. H. (1972). Infinitesimals. American Mathematical Monthly, 79, 242–251.CrossRefGoogle Scholar
- Loemker, L. (Ed.). (1956). Leibniz: Philosophical papers and letters. Chicago: Chicago University Press [Reprinted as Leibniz, Gottfried Wilhelm: Philosophical papers and letters. Second edition. Synthese Historical Library. New York:Humanities Press, 1970].Google Scholar
- Łoś, J. (1955). Quelques remarques, théorèmes et problèmes sur les classes définissables d’algèbres. In: Mathematical interpretation of formal systems (pp. 98–113). Amsterdam: North-Holland.Google Scholar
- Luxemburg, W. (1964). Nonstandard analysis. Lectures on A. Robinson’s Theory of infinitesimals and infinitely large numbers. Pasadena: Mathematics Department, California Institute of Technology’ second corrected ed.Google Scholar
- Magnani, L., & Dossena, R. (2005). Perceiving the infinite and the infinitesimal world: unveiling and optical diagrams in mathematics. Foundations of Science, 10(1), 7–23.CrossRefGoogle Scholar
- Mal’tsev, A.I. [Malcev, Mal’cev] (1936). Untersuchungen aus dem Gebiete der mathematischen Logik. [J] Rec. Math. Moscou (Matematicheskii Sbornik), 1(43), 323–335.Google Scholar
- Mancosu, P. (1996). Philosophy of mathematics and mathematical practice in the seventeenth century. New York: The Clarendon Press/Oxford University Press.Google Scholar
- Mancosu, P. (Ed.).. (2008). The philosophy of mathematical practice. Oxford: Oxford University Press.Google Scholar
- Mancosu, P. (2009). Measuring the size of infinite collections of natural numbers: Was Cantor’s theory of infinite number inevitable? Reviews in Symbols and Logistics, 2(4), 612–646.CrossRefGoogle Scholar
- Mancosu, P., & Vailati, E. (1991). Detleff Clüver: An early opponent of the Leibnizian differential calculus. Centaurus, 33(4), 325–344.Google Scholar
- Marx, K. (1968). Matematicheskie rukopisi. Edited by S. A. Yanovskaya Moscow (Izd. “Nauka”). Translation in: Marx, K.: Mathematical manuscripts of Karl Marx. Translated from the Russian. With additional material by Ernst Kol’man, S. A. Yanovskaya and C. Smith. London: New Park Publications Ltd., 1983.Google Scholar
- McClenon, R. B. (1923). A contribution of Leibniz to the history of complex numbers. American Mathematical Monthly, 30(7), 369–374.CrossRefGoogle Scholar
- Monnoyeur-Broitman, F. (2010). Review of “Infinitesimal Differences” (see Goldenbaum and Jesseph 2008). Journal of the History of Philosophy, 48(4), 527–528.Google Scholar
- Narens, L. (1976). Utility-uncertainty trade-off structures. Journal of Mathematical Psychology, 13(3), 296–322.CrossRefGoogle Scholar
- Nelson, E. (1977). Internal set theory: A new approach to nonstandard analysis. Bulletin of American Mathematical Society, 83(6), 1165–1198.CrossRefGoogle Scholar
- Newton, I. (1946). Sir Isaac Newton’s mathematical principles of natural philosophy and his system of the world, a revision by F. Cajori of A. Motte’s 1729 translation. Berkeley: University of California Press.Google Scholar
- Newton, I. (1999). The Principia: Mathematical principles of natural philosophy, translated by I. B. Cohen & A. Whitman, preceded by A guide to Newton’s Principia by I. B. Cohen. Berkeley: University of California Press.Google Scholar
- Poincaré, H. (2008). The Foundations of Science: Science and Hypothesis, the Value of Science Science and Methods. Introduction by George Bruce Halsted. USA: Bibliobazaar.Google Scholar
- Pourciau, B. (2001). Newton and the notion of limit. Historia Mathematica, 28(1), 18–30.CrossRefGoogle Scholar
- Probst, S. Indivisibles and Infinitesimals in Early Mathematical Texts of Leibniz. In: “Infinitesimal Differences”, see (Goldenbaum and Jesseph 2008).Google Scholar
- Robinson, A. (1961). Non-standard analysis. Nederl. Akad. Wetensch. Proc. Ser. A 64 = Indag. Math., 23, 432–440 [reprinted in Selected Works, see (Robinson 1979) , pp. 3–11].Google Scholar
- Robinson, A. (1966). Non-standard analysis. Amsterdam: North-Holland Publishing Co.Google Scholar
- Robinson, A. (1967). The metaphysics of the calculus. In Problems in the Philosophy of Mathematics, ed. Lakatos (Amsterdam: North Holland), pp. 28–46, Reprinted in Robinson (1979).Google Scholar
- Robinson, A. (1970). From a formalist’s point of view. Dialectica, 23, 45–49.CrossRefGoogle Scholar
- Robinson, A. (1979). Selected papers of Abraham Robinson. Vol. II. Nonstandard analysis and philosophy. Edited and with introductions by W. A. J. Luxemburg and S. Körner. New Haven, CT: Yale University Press.Google Scholar
- Roquette, P. (2010). Numbers and models, standard and nonstandard. Mathematische Semesterberichte, 57, 185–199.CrossRefGoogle Scholar
- Rothman, T. (1982). Genius and biographers: The fictionalization of Evariste Galois. American Mathematical Monthly, 89(2), 84–106.CrossRefGoogle Scholar
- Russell, B. (1903). The principles of mathematics. Vol. I. Cambridge: Cambridge University Press.Google Scholar
- Rust, H. (2005). Operational semantics for timed systems. Lecture Notes in Computer Science, 3456, 23–29, doi: 10.1007/978-3-540-32008-1_4.CrossRefGoogle Scholar
- Schmieden, C., & Laugwitz, D. (1958). Eine Erweiterung der Infinitesimalrechnung. Mathematische Zeitschrift, 69, 1–39.CrossRefGoogle Scholar
- Schubring, G. (2005). Conflicts between generalization, rigor, and intuition. Number concepts underlying the development of analysis in 17–19th Century France and Germany. Sources and Studies in the History of Mathematics and Physical Sciences. New York: Springer.Google Scholar
- Serfati, M. (Ed.).. (2002). De la méthode. Recherches en histoire et philosophie des mathématiques. USA: Presses universitaires de Franche-Comté (PuFC) Besançon.Google Scholar
- Serfati, M. (2010). The principle of continuity and the ‘paradox’ of Leibnizian mathematics. In M. Dascal (Ed.), The practice of reason: Leibniz and his controversies. Controversies 7, John Benjamins.Google Scholar
- Sherry, D. (1987). The wake of Berkeley’s Analyst: rigor mathematicae? Studies in History and Philosophy of Science, 18(4), 455–480.CrossRefGoogle Scholar
- Sherry, D. (1995). Book review: Berkeley’s philosophy of mathematics, by Douglas M. Jesseph. The Philosophical review, 104(1), 126–128.CrossRefGoogle Scholar
- Skolem, T. (1934). Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen. Fundamenta Mathematicae, 23, 150–161.Google Scholar
- Stevin, S. (1958). The principal works of Simon Stevin. Vols. IIA, IIB: Mathematics. In D. J. Struik, C. V. Swets, & Zeitlinger. Amsterdam, Vol. IIA: v+pp. 1–455 (1 plate), Vol. IIB: 1958 iv+pp, 459–976.Google Scholar
- Strong, E. (1951). Newton’s “mathematical way”. Journal of the History of Ideas, 12(12), 90–110.CrossRefGoogle Scholar
- Stroyan, K. (1972). Uniform continuity and rates of growth of meromorphic functions. Contributions to non-standard analysis (Sympos., Oberwolfach, 1970), pp. 47–64. Studies in Logic and Foundations of Math., Vol. 69. North-Holland, Amsterdam.Google Scholar
- Struik, D. (1948). Marx and mathematics. A Centenary of Marxism. In S. Bernstein and the Editors of Science and Society (pp. 181–196). New York: Science and Society.Google Scholar
- Struik, D. (Ed.). (1969). In: D. J. Struik (Ed.), A source book in mathematics (pp. 1200–1800). Cambridge, MA: Harvard University Press.Google Scholar
- Tall, D. (1980). Looking at graphs through infinitesimal microscopes, windows and telescopes. Mathematics Gazette, 64, 22–49.CrossRefGoogle Scholar
- Tall, D. (1991). Advanced mathematical thinking. In: D. Tall (Ed.), Mathematics education library (pp. 11–155). Dordrecht: Kluwer.Google Scholar
- Tall, D. (2009). Dynamic mathematics and the blending of knowledge structures in the calculus. Transforming Mathematics Education through the use of Dynamic Mathematics. ZDM Mathematics Education, 41(4), 481–492.CrossRefGoogle Scholar
- Tao, T. (2008). Structure and randomness. Pages from year one of a mathematical blog. Providence, RI: American Mathematical Society.Google Scholar
- Tarski, A. (1930). Une contribution à la théorie de la mesure. Fundamenta Mathematicae, 15, 42–50.Google Scholar
- Thiele, R. (2000). Mathesis. Festschrift zum siebzigsten Geburtstag von Matthias Schramm. [Festschrift for the 70th birthday of Matthias Schramm] Edited by Rüdiger Thiele. Verlag für Geschichte der Naturwissenschaften und der Technik, Berlin.Google Scholar
- Urquhart, A. (2008). Mathematics and physics: Strategies of assimilation. In: Mancosu, pp. 417–440.Google Scholar
- van der Waerden, B. L. (1985). A history of algebra. From al-Khwarizmi to Emmy Noether. Berlin: Springer.Google Scholar
- Wisdom, J. (1953). Berkeley’s criticism of the infinitesimal. The British Journal for the Philosophy of Science, 4(13), 22–25.CrossRefGoogle Scholar
- Wittgenstein, L. (1953/2001). Philosophical investigations. New York: Blackwell.Google Scholar
- Zermelo, E. (1904). Beweis, dass jede Menge wohlgeordnet werden kann. Mathematische Annalen, 59(4), 514–516.CrossRefGoogle Scholar