Erkenntnis

, Volume 78, Issue 5, pp 979–990 | Cite as

Ideal Negative Conceivability and the Halting Problem

Original Paper

Abstract

Our limited a priori-reasoning skills open a gap between our finding a proposition conceivable and its metaphysical possibility. A prominent strategy for closing this gap is the postulation of ideal conceivers, who suffer from no such limitations. In this paper I argue that, under many, maybe all, plausible unpackings of the notion of ideal conceiver, it is false that ideal negative conceivability entails possibility.

References

  1. Benacerraf, P. (1962). Tasks, super-tasks, and the modern eleatics. Journal of Philosophy, 59(24), 765–784.CrossRefGoogle Scholar
  2. Chalmers, D. (2002). Does conceivability entail possibility? In T. Gendler & J. Hawthorne (Eds.), Conceivability and possibility (pp. 145–200). Oxford: Oxford University Press.Google Scholar
  3. Chalmers, D. (2009). The two-dimensional argument against materialism. In B. McLaughlin & A. Beckermann (Eds.), The Oxford handbook of philosophy of mind. Oxford: Oxford University Press.Google Scholar
  4. Copeland, B. J. (2002). Accelerating turing machines. Minds and Machines, 12(2), 281–300.CrossRefGoogle Scholar
  5. Copeland, J. B., & Shagrir, O. (2011). Do accelerating turing machines compute the uncomputable? Minds and Machines, 21(2), 221–239.Google Scholar
  6. Davis, M., Sigal, R., & Weyuker, E. (1994). Computability, complexity and languages. London: Academic Press.Google Scholar
  7. Hamkins, J. D. (2002). Infinite time turing machines. Minds and Machines, 12(4), 567–604.CrossRefGoogle Scholar
  8. Hamkins, J. D. (2004). Supertask computation. In B. Löwe, B. Piwinger & T. Räsch (Eds.), Classical and new paradigms of computation and their complexity hierarchies (pp. 141–58). Dordrecht: Kluwer.CrossRefGoogle Scholar
  9. Hamkins, J. D., & Lewis, A. (2000). Infinite time turing machines. Journal of Symbolic Logic, 65(2), 567–604.CrossRefGoogle Scholar
  10. Kripke, S. (1982). Wittgenstein on rules and private language. Cambridge: Harvard University Press.Google Scholar
  11. Menzies, P. (1998). Possibility and conceivability: A response-dependent account of their connections. In R. Casati, & C. Tappolet (Eds.), European review of philosophy, Volume 3: Response-dependence (pp. 255–277). Stanford University Press: Stanford.Google Scholar
  12. Turing, A. (1936). On computable numbers, with an application to the entscheidungsproblem, Proceedings of the london mathematical society, pp. 230–265.Google Scholar
  13. Turing, A. (2001). Systems of logic based on ordinals. In R. Gandy & C. Yates (Eds.), Collected works, Vol. 4 (Mathematical logic). Elsevier: North Holland.Google Scholar
  14. Yablo, S. (1993). Is conceivability a guide to possibility? Philosophy and Phenomenological Research, 53(1), 1–42.CrossRefGoogle Scholar
  15. Ziegler, M. (2005). Computational power of infinite quantum parallelism. International Journal of Theoretical Physics, 44, 2059–2071.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Departament de Lògica, Història i Filosofia de la Ciència C/ Montalegre, 6Universitat de BarcelonaBarcelonaSpain

Personalised recommendations