Erkenntnis

, Volume 78, Issue 2, pp 293–318 | Cite as

Why Frequentists and Bayesians Need Each Other

Original Article

Abstract

The orthodox view in statistics has it that frequentism and Bayesianism are diametrically opposed—two totally incompatible takes on the problem of statistical inference. This paper argues to the contrary that the two approaches are complementary and need to mesh if probabilistic reasoning is to be carried out correctly.

References

  1. Brown, L. D., Cai, T. T., & DasGupta, A. (2001). Interval estimation for a binomial proportion. Statistical Science, 16(2), 101–117.Google Scholar
  2. de Finetti, B. (1937). Foresight. its logical laws, its subjective sources. In H. E. Kyburg & H. E. Smokler (Eds.). Studies in subjective probability (pp. 53–118). Huntington, New York: Robert E. Krieger Publishing Company. Second (1980) edition.Google Scholar
  3. de Finetti, B. (1970). Theory of probability. New York: Wiley.Google Scholar
  4. Gillies, D. (2000). Philosophical theories of probability. London and New York: Routledge.Google Scholar
  5. Grünwald, P., & Dawid, A. P. (2004). Game theory, maximum entropy, minimum discrepancy, and robust Bayesian decision theory. Annals of Statistics, 32(4), 1367–1433.CrossRefGoogle Scholar
  6. Hacking, I. (1965). Logic of statistical inference. Cambridge: Cambridge University Press.Google Scholar
  7. Haenni, R., Romeijn, J.-W., Wheeler, G., & Williamson, J. (2011). Probabilistic logics and probabilistic networks. Synthese library. New York: Springer.CrossRefGoogle Scholar
  8. Hoefer, C. (2007). The third way on objective probability: a sceptic’s guide to objective chance. Mind, 116, 549–696.CrossRefGoogle Scholar
  9. Howson, C. (2001). The logic of Bayesian probability. In D. Corfield, & J. Williamson (Eds.). Foundations of Bayesianism (pp. 137–159). Dordrecht: Kluwer.CrossRefGoogle Scholar
  10. Howson, C., & Urbach, P. (1989). Scientific reasoning: The Bayesian approach. Chicago, IL: Open Court. Second (1993) edition.Google Scholar
  11. Jaynes, E. T. (1976). Confidence intervals vs Bayesian intervals. In W. L. Harper & C. A. Hooker (Eds.). Foundations of probability theory, statistical inference, and statistical theories of science (Vol. 2, pp. 175–257). Dordrecht: D. Reidel.CrossRefGoogle Scholar
  12. Kolmogorov, A. N. (1933). The foundations of the theory of probability. New York: Chelsea Publishing Company (1950).Google Scholar
  13. Kyburg, H. E. Jr., & Teng, C. M. (2001). Uncertain inference. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  14. Lewis, D. K. (1980). A subjectivist’s guide to objective chance. In Philosophical papers (Vol. 2, pp. 83–132). Oxford: Oxford University Press (1986).Google Scholar
  15. Lewis, D. K. (1994). Humean supervenience debugged. Mind, 412, 471–490.Google Scholar
  16. Lindgren, B. W., McElrath, G. W., & Berry, D. A. (1957). Introduction to probability and statistics. New York: Macmillan. 1978 Edition.Google Scholar
  17. Mayo, D. G. (1981). In defense of the Neyman-Pearson theory of confidence intervals. Philosophy of Science, 48, 269–280.CrossRefGoogle Scholar
  18. Mayo, D. G. (1996). Error and the growth of experimental knowledge. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  19. Miller, D. (1966). A paradox of information. British Journal for the Philosophy of Science, 17, 59–61.CrossRefGoogle Scholar
  20. Neyman, J. (1955). The problem of inductive inference. Communications on Pure and Applied Mathematics, 8, 13–46.CrossRefGoogle Scholar
  21. Ramsey, F. P. (1926). Truth and probability. In H. E. Kyburg & H. E. Smokler (Eds.). Studies in subjective probability (pp. 23–52). Huntington, New York: Robert E. Krieger Publishing Company. Second (1980) edition.Google Scholar
  22. Ramsey, F. P. (1928). Reasonable degree of belief. In D. H. Mellor (Ed.). Philosophical papers. Cambridge: Cambridge University Press. 1990 Edition.Google Scholar
  23. Seidenfeld, T. (1979). Philosophical problems of statistical inference: learning from R. A. Fisher. Dordrecht: Reidel.Google Scholar
  24. Solomonoff, R. (1964). A formal theory of inductive inference. Information and Control, 7(1, 2), 1–22, 224–254.Google Scholar
  25. Sweeting, T. J. (2008). On predictive probability matching priors. In B. Clarke & S. Ghosal (Eds.). Pushing the limits of contemporary statistics: Contributions in honor of Jayanta K. Ghosh (pp. 46–59). Beachwood: Institute of Mathematical Statistics.CrossRefGoogle Scholar
  26. von Mises, R. (1928). Probability, statistics and truth. London: Allen and Unwin. Second (1957) edition.Google Scholar
  27. Walley, P. (1991). Statistical reasoning with imprecise probabilities. London: Chapman and Hall.Google Scholar
  28. Wheeler, G., & Williamson, J. (2011). Evidential probability and objective Bayesian epistemology. In P. S. Bandyopadhyay & M. Forster (Eds.). Philosophy of statistics, handbook of the philosophy of science (pp 307–331). Amsterdam: Elsevier.CrossRefGoogle Scholar
  29. Williamson, J. (2010a). Bruno de Finetti: Philosophical lectures on probability. Philosophia Mathematica, 18(1):130–135.CrossRefGoogle Scholar
  30. Williamson, J. (2010b). In defence of objective Bayesianism. Oxford: Oxford University Press.CrossRefGoogle Scholar
  31. Williamson, J. (2011a). An objective Bayesian account of confirmation. In D. Dieks, W. J. Gonzalez, S. Hartmann, T. Uebel, & M. Weber (Eds.). Explanation, prediction, and confirmation. New trends and old ones reconsidered (pp 53–81). Dordrecht: Springer.CrossRefGoogle Scholar
  32. Williamson, J. (2011b). Objective Bayesianism, Bayesian conditionalisation and voluntarism. Synthese, 178, 67–85.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Philosophy, SECLUniversity of KentCanterburyUK

Personalised recommendations