Skip to main content
Log in

Life cycle assessment in the development process of lightweight railway vehicles using sensitivity analysis

  • Published:
Environment Systems and Decisions Aims and scope Submit manuscript

Abstract

According to EU policy goals, railway shall become the main pillar of a sustainable and smart mobility. This works outlines how the environmental sustainability of railway vehicles can be further improved by integrating Life Cycle Assessment (LCA) in the simulation-based design process of lightweight railway vehicles and by considering environmental sustainability as an equal criterion for the design optimisation. The LCA for lightweight railway vehicles considering the manufacturing, operation and recycling phases is performed using a LCA tool. To link the LCA tool with the simulation-based development process of the vehicle, an interface is implemented. Process and vehicle parameters coming from the development process as well as datasets from LCA databases are used to parameterize the LCA model. By applying local and global sensitivity analyses, the most influencing design parameters with respect to the environmental impact can be identified and the effect of uncertainties studied. Based on the results, the environmental sustainability of the vehicle design can be optimised. The development process including LCA is illustrated for the application case of a railway vehicle bogie, exposed to high loads and design requirements. Different design configurations based on steel and carbon fibre composites are compared. For the assumed energy supply, it is the found that reduction in energy consumption during the operation phase overcompensates for energy-intensive production and recycling of carbon fibre composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets analysed during the current study are available in the given references and in the database openLCA Nexus (nexus.openlca.org). They are available from the corresponding author on reasonable request.

References

  • Acero AP, Rodriguez C, Ciroth A (2015) LCIA methods—impact assessment methods in life cycle assessment and their impact categories. GreenDelta GmbH, Berlin

    Google Scholar 

  • Bach V, Lehmann A, Görmer M, Finkbeiner M (2018) Product environmental footprint (PEF) pilot phase—comparability over flexibility? Sustainability 10:2898

    Article  Google Scholar 

  • Banar M, Özdemir A (2015) An evaluation of railway passenger transport in turkey using life cycle assessment and life cycle cost methods. Transp Res Part D 41:88–105

    Article  Google Scholar 

  • Broadbent C (2016) Steel’s recyclability: demonstrating the benefits of recycling steel to achieve a circular economy. Int J Life Cycle Assess 21:1658–1665

    Article  Google Scholar 

  • Cellura M, Longo S, Mistretta M (2011) Sensitivity analysis to quantify uncertainty in life cycle assessment: the case study on Italien tile. Renew Sustain Energy Rev 15:4697–4705

    Article  Google Scholar 

  • CEN (2011). EN 15827:2011 railway applications—requirements for bogies and running gears.

  • Chang Y-J, Sproesser G, Neugebauer S, Wolf K, Scheumann R, Pittner A, Finkbeiner M (2015) Environmental and social life cycle assessment of welding technologies. Procedia CIRO 26:293–298

    Article  Google Scholar 

  • Cheul-Kyu L, Yong-Ki K, Phirada P, Jung-Suk K, Kun-Mo L, Chang-Sik J (2010) Assessing environmentally friendly recycling methods for composite bodies of railway rolling stock using life-cycle analysis. Transp Res Part D 15:197–203

    Article  Google Scholar 

  • Ciroth A, Di Noi C, Lohse T, Srocka M (2019) openlca 1.9 comprehensive user manual. GreenDelta GmbH, Berlin

    Google Scholar 

  • Commission E (2021) Sustainable and smart mobility strategy, Brussels

    Google Scholar 

  • Crosbee D, Rothwell E, Iwnicki S (2020) Developing a carbon fibre railway bogie for passenger trains. Global Railway Review, Issue 3,UK

  • Das S (2011) Life cycle assessment of carbon fibre-reinforced polymer composites. Int J Life Cycle Assess 16:268–282

    Article  CAS  Google Scholar 

  • Dedik M, Cechovic L, Gasparik J (2020) Methodical process for innovative management of the sustainable railway passenger transport. Transp Res Procedia 44:305–312

    Article  Google Scholar 

  • Delogu M, Del Pero F, Berzi L, Pierini M, Bonaffini D (2017) End-of-life in the railway sector: analysis of recyclability and recoverability for different vehicle case studies. Waste Manag 60:439–450

    Article  Google Scholar 

  • Delta G (2021) Nexus openlca. GreenDelta GmbH, Berlin

    Google Scholar 

  • Der A, Kaluza A, Kurle D, Herrmann C, Kara S, Russell V (2018) Life cycle engineering of carbon fibres for lightweight structures. Procedia CIRP 69:43–48

    Article  Google Scholar 

  • Der A, Gabrisch C, Kaluza A, Cerdas F, Thiede S, Herrmann C (2019) Integrating environmental impact targets in early phases of production planning for lightweight structures. Procedia CIRP 80:168–173

    Article  Google Scholar 

  • Ellert F, Bradshaw I, Steinhilper R (2015) Major factors influencing tensile strength of repaired cfrp-samples. Procedia CIRP 33:275–280

    Article  Google Scholar 

  • Ferreiro Cabello J, Fraile Garcia E, Martinez Camara E, Perez de la Parte M (2017) Sensitivity analysis of life cycle assessment to select reinforced concrete structures with one-way slabs. Eng Struct 132:586–596

    Article  Google Scholar 

  • Friedrich HE (2017) Leichtbau in der Fahrzeugtechnik. Springer Vieweg, Wiesbaden

    Book  Google Scholar 

  • Frischknecht R (2020) Lehrbuch der Ökobilanzierung. Springer Spektrum, Berlin

    Book  Google Scholar 

  • Garcia R, Linke M, Neßlinger S, Garcia-Manrique J (2017) An infiltration strategy to repair carbon fiber reinforced polymer (CFRP) parts. Procedia Manuf 13:380–387

    Article  Google Scholar 

  • Groen E, Heijungs R (2017) Ignoring correlation in uncertainty and sensitivity analysis in life cycle assessment: what is the risk? Environ Impact Assess Rev 62:98–109

    Article  Google Scholar 

  • Groetsch T, Creighton C, Varley R, Kaluza A, Der A, Cerdas F, Herrmann C (2021) A modular lca/lcc-modelling concept for evaluating material and process innovations in carbon fibre manufacturing. Procedia CIRP 98:529–534

    Article  Google Scholar 

  • Gründer M (2015) Reparatur von CFK Bauteilen bei Lufthansa Technik. Flug Revue

  • Haanstra W, Martinetti A, Braaksma J, van Dongen L (2020) Design of a framework for integrating environmentally sustainable design principles and requirements in train modernization projects. Sustainability 12:6075

    Article  Google Scholar 

  • Hagnell M, Akermo M (2019) The economic and mechanical potential of closed loop material usage and recycling of fibre-reinforced composite materials. J Clean Prod 223:957–968

    Article  Google Scholar 

  • Hauke B (2009) Zur Ressourceneffizienz und Ökobilanzierung von Baustahl in geschlossenen industriellen Kreisläufen. Bauingenieur Band, 84

  • He D, Soo VK, Kim H, Doolan M (2021) Life cycle primary energy demand and greenhouse gas emission benefits of vehicle lightweighting with recycled carbon fibre. Procedia CIRP 98:43–48

    Article  Google Scholar 

  • Hetherington AC, Borrion A, Griffiths O, McManus M (2014) Use of lca as a development tool within early research: challenges and issues across different sectors. Int J Life Cycle Assess 19:130–143

    Article  Google Scholar 

  • Hiebel M, Nühlen J (2016) Technische, ökonomische, ökologische und gesellschaftliche Faktoren von Stahlschrott (Zukunft Stahlschrott). Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik, Oberhausen

    Google Scholar 

  • Hohmann A (2018) Ökobilanzielle Untersuchung von Herstellungsverfahren für CFK Strukturen zur Identifikation von Optimierungspotentialen. Technische Universität München, München

    Google Scholar 

  • Ihme J (2016) Schienenfahrzeugtechnik. Springer Vieweg, Wiesbaden

    Book  Google Scholar 

  • Ingarao G, Deng Y, Marino R, Di Lorenzo R, Lo Franco A (2016) Energy and co2 life cycle inventory issues for aluminium based components: the case study of a high speed train window panel. J Clean Prod 126:1493–503

    Article  Google Scholar 

  • ISO (2006a) ISO 14040:2006 environmental management—life cycle assessment—principles and framework

  • ISO (2006b) ISO 14044:2006 environmental management—life cycle assessment—requirements and guidelines

  • Kalkanis K, Psomopoulos C, Kaminaris S, Ioannidis G, Pachos P (2019) Wind turbine blade composite materials—end of life treatment methods. Energy Procedia 157:1136–1143

    Article  Google Scholar 

  • Kaluza A, Kleemann S, Fröhlich T, Herrmann C, Vietor T (2017) Concurrent design and life cycle engineering in automotive lightweight component development. Procedia CIRP 66:16–21

    Article  Google Scholar 

  • Khalil YF (2017) Eco-efficient lightweight carbon-fiber reinforced polymer for environmentally greener commercial aviation industry. Sustain Prod Consum 12:16–26

    Article  Google Scholar 

  • Khang DS, Tan RR, Uy OM, Promentilla MA, Tuan PD, Abe N, Razon LF (2017) Design of experiments for global sensitivity analysis in life cycle assessment: the case of biodiesel in Vietnam. Resour Conserv Recycl 119:12–23

    Article  Google Scholar 

  • König JH (2016) Neuartige Leichtbau-konzepte und Bauweisen für Schienenfahrzeuge im Hochgeschwindigkeitsverkehr unter besonderer Berücksichtigung des Wagenkastenleichtbaus. German Aerospace Center, Stuttgart

    Google Scholar 

  • Kortazar A, Bueno G, Hoyos D (2021) Dataset for the life cycle assessment of the high speed rail network in Spain. Data in Brief 36:107006

    Article  CAS  Google Scholar 

  • Mayyas AT, Qattawi A, Mayyas AR, Omar M (2013) Quantifiable measures of sustainability: a case study of materials selection for eco-lightweight auto-bodies. J Clean Prod 40:177–189

    Article  Google Scholar 

  • Morini AA, Ribeiro MJ, Hotza D (2019) Early-stage materials selection based on embodied energy and carbon footprint. Mater Des 178:107861

    Article  Google Scholar 

  • Nickel J, Fischer F, Friedrich M, Hühne C, Köke H, König J, Wolff J (2015) Einsatz von CFK-Leichtbau-Faserverbund Technologien im Schienenfahrzeugbau. German Aerospace Center, Braunschweig

    Google Scholar 

  • Onder A, ONeill C, Robinson M (2016) Flying ballast resistance for composite materials in railway vehicle carbody shells. Transp Res Procedia 14:595–604

    Article  Google Scholar 

  • Özdemir A, Önder A (2020) An environmental life cycle comparison of various sandwich composite panels for railway passenger vehicle applications. Environ Sci Pollut Res 27:45076–45094

    Article  Google Scholar 

  • Pagand I (2020) Fostering the railway sector through the European green deal. EU Agency for Railways, Valenciennes

    Google Scholar 

  • Pakdel E, Kashi S, Varley R, Wang X (2021) Recent progress in recycling carbon fibre reinforced composites and dry carbon fibre waste. Resour Conserv Recycl 166:105340

    Article  CAS  Google Scholar 

  • Parolin G, Borges AT, Santos LC, Borille AV (2021) A tool for aircraft eco-design based on streamlined life cycle assessment and uncertainty analysis. Procedia CIRP 98:565–570

    Article  Google Scholar 

  • Poulikidou S (2016) Assessing design strategies for improved life cycle environmental performance of vehicles. KTH Royal Institute of Technology, Stockholm

    Google Scholar 

  • Rabe D, Ruth P, Böhnke C, Kruppke I, Häntzsche E, Cherif C (2021) Novel repair procedures for CFRP components instead of EOL. Materials 14:2711

    Article  CAS  Google Scholar 

  • Ramachandran K, Gnanasagaran CL, Vekariya A (2023) Life cycle assessment of carbon fiber and bio-fiber composites prepared via vacuum bagging technique. J Manuf Process 89:124–131

    Article  Google Scholar 

  • Rao S-H (2021) Transportation synthetic sustainability indices: a case of Taiwan intercity railway transport. Ecol Indic 127:107753

    Article  Google Scholar 

  • Raugei M, Morrey D, Hutchinson A, Winfield P (2015) A coherent life cycle assessment of a range of lightweighting strategies for compact vehicles. J Clean Prod 108:1168–1176

    Article  CAS  Google Scholar 

  • Reimers L, Kaluza A, Cerdas F, Meschke J, Vietor T, Herrmann C (2020) Design of eco-efficient body parts for electric vehicles considering life cycle environmental information. Sustainability 12:5838

    Article  Google Scholar 

  • Ruete M (2021) Challenges for European rail. Jacques Delors Institute, Paris

    Google Scholar 

  • Saltelli A, Tarantola S, Coampolongo F, Ratto M (2004) Sensitivity analysis in practice—a guide to assessing scientific models. Wiley, Chichester

    Google Scholar 

  • Schuler (2021) Die ganze Welt der Blechumformung. Schulergroup, Göppingen

  • Seurat C (2019) Challenging applications in composites: railway compliant recycled carbon fibre based bogie. In: SAMPE Europe conference 2019 Nantes

  • Siebertz K, van Bebber D, Hochkirchen T (2010) Statistische Versuchsplanung—Design of Experiments (DOE). Springer, Heidelberg

    Book  Google Scholar 

  • Soo V, Compston P, Doolan M (2015) Interaction between new car design and recycling impact on life cycle assessment. Procedia CIPR 29:426–431

    Google Scholar 

  • Stiller H (1999) Material intensity of advanced composite materials. Wuppertal Institut für Klima, Umwelt, Energie GmbH, Wuppertal

    Google Scholar 

  • Suzuki T, Takahashi J (2005) Prediction of energy intensity of carbon fibre reinforced plastics for mass-produced passenger cars. In: 9th Japan international SAMPE symposium

  • Thonemann N, Schulte A, Maga D (2020) How to conduct prospective life cycle assessment for emerging technologies? a systematic review and methodological guidance. Sustainability 12:1192

    Article  Google Scholar 

  • Timmis AJ, Hodzic A, Koh L, Bonner M, Soutis C, Schäfer A, Dray L (2014) Environmental impact assessment of aviation emissions reduction through the implementation of composite materials. Int J Life Cycle Assess 20:233–243

    Article  Google Scholar 

  • Trumpf (2013) Wirtschaftlich Schneiden durch dick und dünn. Trumpf GmbH, Ditzingen, Germany

    Google Scholar 

  • Ulbricht A (2019) Entwicklung und technologische Umsetzung eines Schienenfahrzeugs in neuartiger Faserverbund-Leichtbauweise. ZEV Rail

  • Ulianov C, Önder A, Peng Q (2018) Analysis and selection of materials for the design of lightweight railway vehicles. IOP Conf Ser Mater Sci Eng 292:12

    Article  Google Scholar 

  • Wang Y-Z, Zhou S, Ou X-M (2021) Development and application of a life cycle energy consumption and co2 emission analysis model for high-speed railway transport in china. Adv Clim Change Res 12:270–280

    Article  Google Scholar 

  • Winkler-Höhn R, Trampe L, von Dungern F, Johannsen E, Ischtschuk L, Heß P, Grothaus R (2021) Innovativer Einsatz von Faserverbundstrukturen in Schienenfahrzeugen. ZEVrail 145

  • Witik RA, Payet J, Michaud V, Ludwig C, Manson J-AE (2011) Assessing the life cycle costs and environmental performance of lightweight materials in automobile applications. Compos Part 1(42):1694–1709

    Article  Google Scholar 

  • Witik R, Teuscher R, Michaud V, Ludwig C, Manson J-A (2013) Carbon fibre reinforced composite waste: an environmental assessment of recycling, energy recovery and landfilling. Compos Part A Appl Sci Manuf 49:89–99

    Article  CAS  Google Scholar 

  • Xiarchos I, Morozinis A, Charitidis C (2019) Life cycle assessment and possible impacts of CFRPs for space applications. In: MATEC web of conferences, vol 304

  • Yue Y, Wang T, Liang S, Yang J, Hou S, Zhou J, Xu M (2015) Life cycle assessment of high speed rail in China. Transp Res Part D 41:367–376

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

SK was responislbe for performing the work and writing the maunscriot including the preparation of figures.

Corresponding author

Correspondence to Soenke Kraft.

Ethics declarations

Conflict of interest

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraft, S. Life cycle assessment in the development process of lightweight railway vehicles using sensitivity analysis. Environ Syst Decis (2023). https://doi.org/10.1007/s10669-023-09955-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10669-023-09955-6

Keywords

Navigation