Advertisement

Environment Systems and Decisions

, Volume 38, Issue 2, pp 170–176 | Cite as

Comparative, collaborative, and integrative risk governance for emerging technologies

  • Igor LinkovEmail author
  • Benjamin D. Trump
  • Elke Anklam
  • David Berube
  • Patrick Boisseasu
  • Christopher Cummings
  • Scott Ferson
  • Marie-Valentine Florin
  • Bernard Goldstein
  • Danail Hristozov
  • Keld Alstrup Jensen
  • Georgios Katalagarianakis
  • Jennifer Kuzma
  • James H. Lambert
  • Timothy Malloy
  • Ineke Malsch
  • Antonio Marcomini
  • Myriam Merad
  • José Palma-Oliveira
  • Edward Perkins
  • Ortwin Renn
  • Thomas Seager
  • Vicki Stone
  • Daniel Vallero
  • Theo Vermeire
Perspectives

Abstract

Various emerging technologies challenge existing governance processes to identify, assess, and manage risk. Though the existing risk-based paradigm has been essential for assessment of many chemical, biological, radiological, and nuclear technologies, a complementary approach may be warranted for the early-stage assessment and management challenges of high uncertainty technologies ranging from nanotechnology to synthetic biology to artificial intelligence, among many others. This paper argues for a risk governance approach that integrates quantitative experimental information alongside qualitative expert insight to characterize and balance the risks, benefits, costs, and societal implications of emerging technologies. Various articles in scholarly literature have highlighted differing points of how to address technological uncertainty, and this article builds upon such knowledge to explain how an emerging technology risk governance process should be driven by a multi-stakeholder effort, incorporate various disparate sources of information, review various endpoints and outcomes, and comparatively assess emerging technology performance against existing conventional products in a given application area. At least in the early stages of development when quantitative data for risk assessment remain incomplete or limited, such an approach can be valuable for policymakers and decision makers to evaluate the impact that such technologies may have upon human and environmental health.

Keywords

Synthetic biology Biotechnology Nanotechnology Governance Risk assessment Policy Decision analysis Regulations 

Notes

Acknowledgements

The authors were participants in the “Risk Policy Forum on Key Enabling Technologies” hosted by the Society for Risk Analysis, and Ca Foscari University, Venice, Italy, on March 2017. This workshop and paper were part of a SRA New Initiative Project. The authors thank the conference attendees and panelists that drove discussions, as well as Emily Wells for her editorial assistance, and George Shephard for his figure design assistance. The views expressed within this paper are solely the opinions of the authors, and are not necessarily representative of their organizational affiliations.

References

  1. Bates M, Grieger KD, Trump BD, Keisler JM, Plourde KJ, Linkov I (2015) Emerging technologies for environmental remediation: integrating data and judgment. Environ Sci Technol 50:349–358CrossRefGoogle Scholar
  2. Blaunstein R, Trump B, Linkov I (2014) Nanotechnology risk management: an insurance industry perspective. In: Hull M, Bowman D (eds) Nanotechnology environmental health and safety: risks, regulation, and management, 2nd edn. Elsevier, Oxford, pp 247–263Google Scholar
  3. Calvert J, Martin P (2009) The role of social scientists in synthetic biology. EMBO Rep 10(3):201–204CrossRefGoogle Scholar
  4. Canis L, Linkov I, Seager TP (2010) Application of stochastic multiattribute analysis to assessment of single walled carbon nanotube synthesis processes. Environ Sci Technol 44(22):8704–8711CrossRefGoogle Scholar
  5. Csiszar SA, Meyer DE, Dionisio KL, Egeghy P, Isaacs KK, Price PS et al (2016) Conceptual framework to extend life cycle assessment using near-field human exposure modeling and high-throughput tools for chemicals. Environ Sci Technol 50(21):11922–11934CrossRefGoogle Scholar
  6. Cummings CL, Kuzma J (2017) Societal risk evaluation scheme (SRES): scenario-based multi-criteria evaluation of synthetic biology applications. PLoS ONE 12:e0168564CrossRefGoogle Scholar
  7. Cummings CL, Lin SH, Trump BD (2017) Public perceptions of climate geoengineering: a systematic review of the literature. Clim Res 73(3):247–264CrossRefGoogle Scholar
  8. Epstein MM, Vermeire T (2016) Scientific opinion on risk assessment of synthetic biology. Trends Biotechnol 34(8):601–603CrossRefGoogle Scholar
  9. Falkner R, Jaspers N (2012) Regulating nanotechnologies: risk, uncertainty and the global governance gap. Global Environ Politics 12(1):30–55CrossRefGoogle Scholar
  10. Ferson S, Sentz K (2016) Epistemic uncertainty in agent-based modeling. In: 7th international workshop on reliable engineering computingGoogle Scholar
  11. Grieger K, Hansen SF, Baun A (2009) The known unknowns of nanomaterials: describing and characterizing uncertainty within environmental, health and safety risks. Nanotoxicology 3:222–233CrossRefGoogle Scholar
  12. Gronvall GK (2018) Safety, security, and serving the public interest in synthetic biology. J Ind Microbiol Biotechnol 21:1–4Google Scholar
  13. Hristozov DR, Gottardo S, Critto A, Marcomini A (2012) Risk assessment of engineered nanomaterials: a review of available data and approaches from a regulatory perspective. Nanotoxicology 6(8):880–898CrossRefGoogle Scholar
  14. Hristozov D, Gottardo S, Semenzin E, Oomen A, Bos P, Peijnenburg W et al (2016) Frameworks and tools for risk assessment of manufactured nanomaterials. Environ Int 95:36–53CrossRefGoogle Scholar
  15. König H, Frank D, Heil R, Coenen C (2016) Synthetic biology’s multiple dimensions of benefits and risks: implications for governance and policies. In: Boldt J (ed) Synthetic biology. Springer Fachmedien, Wiesbaden, pp 217–232Google Scholar
  16. Kuiken T, Dana G, Oye K, Rejeski D (2014) Shaping ecological risk research for synthetic biology. J Environ Stud Sci 4(3):191–199CrossRefGoogle Scholar
  17. Kuzma J (2015) Translational governance research for synthetic biology. J Responsible Innov 2(1):109–112CrossRefGoogle Scholar
  18. Kuzma J, Paradise J, Ramachandran G, Kim J, Kokotovich A, Wolf SM (2008) An integrated approach to oversight assessment for emerging technologies. Risk Anal 28(5):1197–1220CrossRefGoogle Scholar
  19. Linkov I, Bates ME, Canis LJ, Seager TP, Keisler JM (2011) A decision-directed approach for prioritizing research into the impact of nanomaterials on the environment and human health. Nat Nanotechnol 6(12):784CrossRefGoogle Scholar
  20. Linkov I, Bates ME, Trump BD, Seager TP, Chappell MA, Keisler JM (2013) For nanotechnology decisions, use decision analysis. Nano Today 8(1):5–10CrossRefGoogle Scholar
  21. Linkov I, Trump B, Jin D, Mazurczak M, Schreurs M (2014) A decision-analytic approach to predict state regulation of hydraulic fracturing. Environ Sci Eur 26(1):20CrossRefGoogle Scholar
  22. Linkov I, Trump BD, Wender BA, Seager TP, Kennedy AJ, Keisler JM (2017) Integrate life-cycle assessment and risk analysis results, not methods. Nat Nanotechnol 12(8):740–743CrossRefGoogle Scholar
  23. Linkov I, Trump BD, Poinsatte-Jones K, Florin MV (2018) Governance strategies for a sustainable digital world. Sustainability 10(2):440CrossRefGoogle Scholar
  24. Malloy T, Trump BD, Linkov I (2016) Risk-based and prevention-based governance for emerging materials. Environ Sci Technol 50:6822–6824CrossRefGoogle Scholar
  25. Malsch I, Mullins M, Semenzin E, Zabeo A, Hristozov D, Marcomini A (2018) Decision support for international agreements regulating nanomaterials. NanoEthics 12(1):39–54CrossRefGoogle Scholar
  26. Mandel G, Marchant GE (2014) The living regulatory challenges of synthetic biology. Iowa L Rev 100:155Google Scholar
  27. Mohan M, Trump BD, Bates ME, Monica JC Jr, Linkov I (2012) Integrating legal liabilities in nanomanufacturing risk management. Environ Sci Technol 46(15):7955–7962CrossRefGoogle Scholar
  28. Mukunda G, Oye KA, Mohr SC (2009) What rough beast? Synthetic biology, uncertainty, and the future of biosecurity. Politics Life Sci 28(2):2–26CrossRefGoogle Scholar
  29. National Research Council (1983) Risk assessment in the federal government: managing the process. National Academies Press, Washington, DCGoogle Scholar
  30. National Research Council (2011) Sustainability and the U.S. EPA. The National Academies Press, Washington, DC.  https://doi.org/10.17226/13152 CrossRefGoogle Scholar
  31. Oye KA (2012) Proactive and adaptive governance of emerging risks: the case of DNA synthesis and synthetic biology. International Risk Governance Council, GenevaGoogle Scholar
  32. Palma-Oliveira JM, Trump BD, Wood MD, Linkov I (2017) Community-driven hypothesis testing: a solution for the tragedy of the anticommons. Risk Anal 38:620–634CrossRefGoogle Scholar
  33. Renn O (2005) White paper on risk governance: towards an integrative approach. International Risk Governance Council, GenevaGoogle Scholar
  34. Renn O, Klinke A, van Asselt M (2011) Coping with complexity, uncertainty, and ambiguity in risk governance: a synthesis. Ambio 40:231–246CrossRefGoogle Scholar
  35. Rycroft T, Trump B, Poinsatte-Jones K, Linkov I (2018) Nanotoxicology and nanomedicine: making development decisions in an evolving governance environment. J Nanopart Res 20(2):52CrossRefGoogle Scholar
  36. Schmidt M, Kelle A, Ganguli-Mitra A, de Vriend H (eds) (2009) Synthetic biology: the technoscience and its societal consequences. Springer, New YorkGoogle Scholar
  37. Scott-Fordsmand JJ, Pozzi-Mucelli S, Tran L, Aschberger K, Sabella S, Vogel U et al (2014) A unified framework for nanosafety is needed. Nano Today 9(5):546–549CrossRefGoogle Scholar
  38. Seager TP, Linkov I (2008) Coupling multicriteria decision analysis and life cycle assessment for nanomaterials. J Ind Ecol 12(3):282–285CrossRefGoogle Scholar
  39. Seager TP, Trump BD, Poinsatte-Jones K, Linkov I (2017) Why life cycle assessment does not work for synthetic biology. Environ Sci Technol.  https://doi.org/10.1021/acs.est.7b01604 CrossRefGoogle Scholar
  40. Shatkin JA (2008) Informing environmental decision making by combining life cycle assessment and risk analysis. J Ind Ecol 12(3):278–281CrossRefGoogle Scholar
  41. Shatkin JA, Ong KJ, Beaudrie C, Clippinger AJ, Hendren CO, Haber LT et al (2016) Advancing risk analysis for nanoscale materials: report from an international workshop on the role of alternative testing strategies for advancement. Risk Anal 36(8):1520–1537CrossRefGoogle Scholar
  42. Siegrist M, Keller C, Kastenholz H, Frey S, Wiek A (2007) Laypeople’s and experts’ perception of nanotechnology hazards. Risk Anal 27(1):59–69CrossRefGoogle Scholar
  43. Small M, Stern PC, Bomberg E, Christopherson SM, Goldstein BD, Israel AL, Jackson RB, Krupnick A, Mauter MS, Nash J, North DW, Olmstead SM, Prakash A, Rabe B, Richardson N, Tierney S, Webler T, Wong-Parodi G, Zielinska B (2014) Risks and risk governance in unconventional shale gas development. Environ Sci Technol 48:8289–8297CrossRefGoogle Scholar
  44. Subramanian V, Semenzin E, Hristozov D, Marcomini A, Linkov I (2014) Sustainable nanotechnology: defining, measuring and teaching. Nano Today 9(1):6–9CrossRefGoogle Scholar
  45. Tait J (2009) Governing synthetic biology: processes and outcomes. In: Schmidt M (ed) Synthetic biology. Springer, Dordrecht, pp 141–154CrossRefGoogle Scholar
  46. Tait J (2012) Adaptive governance of synthetic biology. EMBO Rep 13(7):579–579CrossRefGoogle Scholar
  47. Tervonen T, Linkov I, Figueira JR, Steevens J, Chappell M, Merad M (2009) Risk-based classification system of nanomaterials. J Nanopart Res 11(4):757–766CrossRefGoogle Scholar
  48. Trump BD (2017) Synthetic biology regulation and governance: lessons from TAPIC for the United States, European Union, and Singapore. Health Policy 121(11):1139–1146CrossRefGoogle Scholar
  49. Trump BD, Linkov F, Edwards RP, Linkov I (2015) Not a Humbug: the evolution of patient-centred medical decision-making. Evid Based Med 20(6):193–197CrossRefGoogle Scholar
  50. Trump BD, Cummings C, Kuzma J, Linkov I (2017) A decision analytic model to guide early-stage government regulatory action: applications for synthetic biology. Regul Gov.  https://doi.org/10.1111/rego.12142 CrossRefGoogle Scholar
  51. Trump BD, Hristozov D, Malloy T, Linkov I (in press) Risk associated with engineered nanomaterials: different tools for different ways to govern. Nano TodayGoogle Scholar
  52. Vallero D (2015) Environmental biotechnology: a biosystems approach. Academic Press, AmsterdamGoogle Scholar
  53. Wilson MP, Schwarzman MR (2009) Toward a new US chemicals policy: rebuilding the foundation to advance new science, green chemistry, and environmental health. Environ Health Perspect 117(8):1202CrossRefGoogle Scholar
  54. Wood MD, Plourde K, Larkin S, Egeghy PE, Williams AJ, Zemba V, Linkov I, Vallero DA (in press) Advances on a decision analytic approach to exposure-based chemical prioritization. Risk AnalGoogle Scholar
  55. Yatsalo B, Gritsyuk S, Sullivan T, Trump B, Linkov I (2016) Multi-criteria risk management with the use of DecernsMCDA: methods and case studies. Environ Syst Decis 36(3):266–276CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  • Igor Linkov
    • 1
    Email author
  • Benjamin D. Trump
    • 1
  • Elke Anklam
    • 2
  • David Berube
    • 3
  • Patrick Boisseasu
    • 4
  • Christopher Cummings
    • 5
  • Scott Ferson
    • 6
  • Marie-Valentine Florin
    • 7
  • Bernard Goldstein
    • 8
  • Danail Hristozov
    • 9
  • Keld Alstrup Jensen
    • 10
  • Georgios Katalagarianakis
    • 11
  • Jennifer Kuzma
    • 3
  • James H. Lambert
    • 12
    • 13
  • Timothy Malloy
    • 14
  • Ineke Malsch
    • 15
  • Antonio Marcomini
    • 9
  • Myriam Merad
    • 16
  • José Palma-Oliveira
    • 17
  • Edward Perkins
    • 1
  • Ortwin Renn
    • 18
  • Thomas Seager
    • 19
  • Vicki Stone
    • 20
  • Daniel Vallero
    • 21
  • Theo Vermeire
    • 22
  1. 1.Risk & Decision Science Team, Environmental Risk Assessment BranchUS Army Engineer Research and Development CenterConcordUSA
  2. 2.European Commission, Joint Research CentreAntwerpBelgium
  3. 3.Center for Genetic Engineering in SocietyNorth Carolina State UniversityRaleighUSA
  4. 4.European Nanomedicine LaboratoryGrenobleFrance
  5. 5.Nanyang Technological UniversitySingaporeSingapore
  6. 6.Institute for Risk and UncertaintyUniversity of LiverpoolLiverpoolUK
  7. 7.IRGC, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
  8. 8.University of PittsburghPittsburghUSA
  9. 9.Ca’Foscari University of VeniceVeniceItaly
  10. 10.National Research Centre for the Working EnvironmentCopenhagenDenmark
  11. 11.European CommissionBrusselsBelgium
  12. 12.University of VirginiaCharlottesvilleUSA
  13. 13.Society for Risk AnalysisMcLeanUSA
  14. 14.University of California at Los AngelesLos AngelesUSA
  15. 15.Malsch TechnoValuationUtrechtThe Netherlands
  16. 16.UMR ESPACE and UMR LAMSADE PSL, CNRSParisFrance
  17. 17.CICPSI, Faculdade de PsicologiaUniversidade de LisboaLisboaPortugal
  18. 18.Institute for Advanced Sustainability StudiesPotsdamGermany
  19. 19.Arizona State UniversityTempeUSA
  20. 20.Heriot-Watt UniversityEdinburghUK
  21. 21.National Exposure Research LaboratoryUS Environmental Protection AgencyWashingtonUSA
  22. 22.National Institute for Public Health and the Environment (RIVM)UtrechtThe Netherlands

Personalised recommendations