Environment Systems and Decisions

, Volume 35, Issue 1, pp 88–109 | Cite as

Nanomaterial risk screening: a structured approach to aid decision making under uncertainty

  • Christian E. H. Beaudrie
  • Milind Kandlikar
  • Robin Gregory
  • Graham Long
  • Tim Wilson
Article

Abstract

The responsible development of new nanomaterials and nano-enabled products requires that potential risks are understood and managed before harms occur. Although quantitative and predictive tools for anticipating human health and environmental risk are in early stages of development, there is a clear need for screening methodologies to inform decision making related to nanomaterial risk management in regulatory agencies and industry. This paper presents the results of a two-day workshop with nanotechnology experts aimed at developing a risk-screening framework for nanomaterials. Drawing upon expertise in nanotoxicology, human exposure, environmental fate and transport, and structured decision making, participants developed a decision support framework relating key nanomaterial physicochemical and product characteristics to important hazard and exposure indicators. Application of the preliminary nano-risk-screening tool (NRST) to several test cases illustrates the utility of the approach for both identifying nanomaterial characteristics that drive risks and for highlighting opportunities to redesign products to minimize risks. This framework for aiding risk managers’ decisions under uncertainty provides the foundation for the development of a transparent and adaptable screening tool that can inform the management of potential risks.

Keywords

Nanomaterials Nanotechnology Risk assessment Structured decision making Decision analysis 

Supplementary material

10669_2014_9529_MOESM1_ESM.doc (442 kb)
Supplementary material 1 (DOC 442 kb)

References

  1. Auffan M, Rose J, Bottero J-Y et al (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641. doi:10.1038/nnano.2009.242 CrossRefGoogle Scholar
  2. Beaudrie CEH, Satterfield T, Kandlikar M, Harthorn BH (2013) Expert views on regulatory preparedness for managing the risks of nanotechnologies. PLoS ONE 8:e80250. doi:10.1371/journal.pone.0080250 CrossRefGoogle Scholar
  3. Berube D, Cummings C, Cacciatore M (2011) Characteristics and classification of nanoparticles: expert Delphi survey. Nanotoxicology 5:236–243. doi:10.3109/17435390.2010.521633 CrossRefGoogle Scholar
  4. Bosso CJ (2010) Governing uncertainty: environmental regulation in the age of nanotechnology. RoutledgeGoogle Scholar
  5. Braydich-Stolle LK, Schaeublin NM, Murdock RC et al (2008) Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J Nanopart Res 11:1361–1374. doi:10.1007/s11051-008-9523-8 CrossRefGoogle Scholar
  6. Burgman MA (2005) Risks and decisions for conservation and environmental management. 1–485Google Scholar
  7. Choi J, Ramachandran G, Kandlikar M (2009) The impact of toxicity testing costs on nanomaterial regulation. Environ Sci Technol 137–156Google Scholar
  8. Cooke RM (1991) Experts in uncertainty: opinion and subjective probability in science. Oxford University Press, New YorkGoogle Scholar
  9. Cronin M, Jaworska J, Walker J et al (2003) Use of QSARs in international decision-making frameworks to predict health effects of chemical substances. Environ Health Perspect 111:1391CrossRefGoogle Scholar
  10. Eckelman MJ, Mauter MS, Isaacs JA, Elimelech M (2012) New perspectives on nanomaterial aquatic ecotoxicity: production impacts exceed direct exposure impacts for carbon nanotoubes. Environ Sci Technol 46:2902–2910. doi:10.1021/es203409a CrossRefGoogle Scholar
  11. EFSA Scientific Committee (2011) Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. doi: 10.2903/j.efsa.2011.2140
  12. Flari V, Chaudhry Q, Neslo R, Cooke R (2011) Expert judgment based multi-criteria decision model to address uncertainties in risk assessment of nanotechnology-enabled food products. J Nanopart Res 13:1813–1831. doi:10.1007/s11051-011-0335-x CrossRefGoogle Scholar
  13. Global Industry Analysts Inc (2010) Nanotechnology—a global strategic business report, MCP-1031Google Scholar
  14. Gregory R, Failing L, Harstone M et al (2012) Structured decision making: a practical guide to environmental management choices. Wiley-Blackwell, LondonCrossRefGoogle Scholar
  15. Grieger K, Linkov I, Hansen SF, Baun A (2012) Environmental risk analysis for nanomaterials: review and evaluation of frameworks. Nanotoxicology 6(2):196–212CrossRefGoogle Scholar
  16. Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325. doi:10.1007/s10646-008-0206-0 CrossRefGoogle Scholar
  17. Hansen SF, Larsen BH, Olsen SI, Baun A (2007) Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology 1:243–250. doi:10.1080/17435390701727509 CrossRefGoogle Scholar
  18. Harper SL, Carriere JL, Miller JM et al (2011) Systematic evaluation of nanomaterial toxicity: utility of standardized materials and rapid assays. ACS Nano 5:4688–4697. doi:10.1021/nn200546k CrossRefGoogle Scholar
  19. Hawkins NC, Evans JS (1989) Subjective estimation of toluene exposures: a calibration study of industrial hygienists. Appl Ind Hyg 4:61–68CrossRefGoogle Scholar
  20. Helmer O, Brown B, Gordon T (1966) Social technology. Basic Books, New YorkGoogle Scholar
  21. Hendren CO, Mesnard X, Dröge J, Wiesner MR (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol 45:2562–2569. doi:10.1021/es103300g CrossRefGoogle Scholar
  22. Henrion M (2013) Practical issues in constructing a Bayes’ belief network. arXiv cs.AIGoogle Scholar
  23. Höck J, Epprecht T, Hofmann H et al (2010) Guidelines on the precautionary matrix for synthetic nanomaterials. Federal Office for Public Health and Federal Office for the Environment, BernGoogle Scholar
  24. IPCC (2012) Meeting report of the intergovernmental panel on climate change expert meeting on geoengineering, 99 ppGoogle Scholar
  25. Jiang J, Oberdörster G, Elder A et al (2008) Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2:33–42. doi:10.1080/17435390701882478 CrossRefGoogle Scholar
  26. Kahn H, Wiener AJ, Bell D (1967) The year 2000: a framework for speculation on the next thirty-three years, 2 ppGoogle Scholar
  27. Kandlikar M, Ramachandran G, Maynard A, Murdock B (2007) Health risk assessment for nanoparticles: a case for using expert judgment. J Nanopart Res 9:137–156CrossRefGoogle Scholar
  28. Keeney RL, Gregory RS (2005) Selecting attributes to measure the achievement of objectives. Oper Res 53:1–11. doi:10.1287/opre.1040.0158 CrossRefGoogle Scholar
  29. Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692. doi:10.1007/s11051-013-1692-4 CrossRefGoogle Scholar
  30. Krewski D, Andersen ME, Mantus E, Zeise L (2009) Toxicity testing in the 21st Century: implications for human health risk assessment. Risk Anal 29:474–479. doi:10.1111/j.1539-6924.2008.01150.x CrossRefGoogle Scholar
  31. Krewski D, Acosta D Jr, Andersen M et al (2010) Toxicity testing in the 21st century: a vision and a strategy. J Toxicol Environ Health Part B 13:51–138. doi:10.1080/10937404.2010.483176 CrossRefGoogle Scholar
  32. Linkov I, Satterstrom F, Steevens J, Ferguson E (2007) Multi-criteria decision analysis and environmental risk assessment for nanomaterials. J Nanopart ResGoogle Scholar
  33. Linstone HA, Turoff M (1975) The Delphi method: techniques and applications. Addison-Wesley, BostonGoogle Scholar
  34. Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles–A review. Environ Pollut. doi:10.1016/j.envpol.2012.08.011 Google Scholar
  35. Money ES, Reckhow KH, Wiesner MR (2012) The use of Bayesian networks for nanoparticle risk forecasting: model formulation and baseline evaluation. Sci Total Environ 426:436–445. doi:10.1016/j.scitotenv.2012.03.064 CrossRefGoogle Scholar
  36. Morgan K (2005) Development of a preliminary framework for informing the risk analysis and risk management of nanoparticles. Risk Anal 25:1621–1635. doi:10.1111/j.1539-6924.2005.00681.x CrossRefGoogle Scholar
  37. Morgan MG, Henrion M (1990) Uncertainty: a guide to dealing with uncertainty in quantitative risk and policy analysis. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  38. Morgan MG, Keith DW (1995) Subjective judgments by climate experts. Environ Sci Technol 29:468A–476A. doi:10.1021/es00010a753 Google Scholar
  39. Morgan G, Pitelka L, Shevliakova E (2001) Elicitation of expert judgments of climate change impacts on forest ecosystems. Clim Change 49:279–307CrossRefGoogle Scholar
  40. Morris J, Willis J, De Martinis D et al (2010) Science policy considerations for responsible nanotechnology decisions. Nat Nanotechnol 6:73–77. doi:10.1038/nnano.2010.191 CrossRefGoogle Scholar
  41. National Research Council (2007) Toxicity testing in the 21st century: a vision and a strategy. The National Academies Press, Washington, DCGoogle Scholar
  42. Nel A (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. doi:10.1126/science.1114397 CrossRefGoogle Scholar
  43. Nel AE, Nasser E, Godwin H et al (2013) A multi-stakeholder perspective on the use of alternative test strategies for nanomaterial safety assessment. ACS Nano 7:130807083151000. doi:10.1021/nn4037927 Google Scholar
  44. Oberdörster G, Maynard A, Donaldson K et al (2005a) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle Fibre Toxicol 2:8CrossRefGoogle Scholar
  45. Oberdörster G, Oberdorster E, Oberdorster J (2005b) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839. doi:10.1289/ehp.7339 CrossRefGoogle Scholar
  46. Paik S, Zalk D, Swuste P (2008) Application of a pilot control banding tool for risk level assessment and control of nanoparticle exposures. Ann Occup Hyg 52:419CrossRefGoogle Scholar
  47. Project on Emerging Nanotechnologies, Woodrow Wilson International Center for Scholars (2014) Consumer Products Inventory. http://www.nanotechproject.org/inventories/consumer/. Accessed 4 Jul 2014
  48. Puzyn T, Leszczynska D, Leszczynski J (2009) Toward the development of nano-QSARs: advances and challenges. Small 5:2494–2509. doi:10.1002/smll.200900179 CrossRefGoogle Scholar
  49. Ramachandran G (2001) Retrospective exposure assessment using Bayesian methods. Ann Occup Hyg 45:651–667CrossRefGoogle Scholar
  50. Ramachandran G (2003) Expert judgment and occupational hygiene: application to aerosol speciation in the nickel primary production industry. Ann Occup Hyg 47:461–475. doi:10.1093/annhyg/meg066 CrossRefGoogle Scholar
  51. Ramachandran G, Vincent JH (1999) A Bayesian approach to retrospective exposure assessment. Appl Occup Environ Hyg. doi:10.1080/104732299302549
  52. Risbey J, Kandlikar M (2002) Expert assessment of uncertainties in detection and attribution of climate change. Bull Am Meteorol Soc 83:1317–1326CrossRefGoogle Scholar
  53. Risbey JS, Kandlikar M, Karoly DJ (2001) A protocol to articulate and quantify uncertainties in climate change detection and attribution. Climate Res 16:61–78CrossRefGoogle Scholar
  54. Robichaud CO, Uyar A, Darby M et al (2009) Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol 43:4227–4233CrossRefGoogle Scholar
  55. Schmidt KF (2007) Nanofrontiers: visions for the future of nanotechnology. Woodrow Wilson International Center for Scholars, pp 1–51Google Scholar
  56. Sizing nanotechnology’s value chain. Lux Research, 2004. https://portal.luxresearchinc.com/reporting/research/document_excerpt/2650
  57. Suttiponparnit K, Jiang J, Sahu M et al (2010) Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res Lett 6:27. doi:10.1007/s11671-010-9772-1 Google Scholar
  58. Tervonen T, Linkov I, Figueira JR et al (2008) Risk-based classification system of nanomaterials. J Nanopart Res 11:757–766. doi:10.1007/s11051-008-9546-1 CrossRefGoogle Scholar
  59. Walker K, Evans J, MacIntosh D (2001) Use of expert judgment in exposure assessment. Part I. Characterization of personal exposure to …. J Exposure Anal Environ EpidemiolGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Christian E. H. Beaudrie
    • 1
    • 2
  • Milind Kandlikar
    • 1
    • 3
  • Robin Gregory
    • 4
  • Graham Long
    • 2
  • Tim Wilson
    • 2
  1. 1.Institute for Resources, Environment and SustainabilityUniversity of British ColumbiaVancouverCanada
  2. 2.Compass Resource Management LtdVancouverCanada
  3. 3.Liu Institute for Global IssuesUniversity of British ColumbiaVancouverCanada
  4. 4.Decision ResearchEugeneUSA

Personalised recommendations