Skip to main content
Log in

On the sensitivity of the value of information to risk aversion in two-action decision problems

  • Published:
Environment Systems and Decisions Aims and scope Submit manuscript

Abstract

This paper discusses the sensitivity of the value of information to the risk aversion in two-action decision problems when the initial wealth is uncertain. We demonstrate that there is no general monotonicity between information value and the Arrow–Pratt risk aversion in this setting. We then show that monotonicity exists in the sense of Rubinstein’s measure of risk aversion when the lottery is independent of the initial wealth. Finally, we show that if the lottery is dependent on the initial wealth, then Ross’s measure of risk aversion is needed to characterize this monotonic relation. Our results explain the shape of the sensitivity analysis curve of the value of information to risk aversion and interpret various measures of risk aversion based on their monotonicity with information value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbas A (2006) Maximum entropy utility. Oper Res 54(2):277–290

    Article  Google Scholar 

  • Abbas A, Matheson J, Bordley R (2009) Effective utility functions induced by organizational target-based incentives. Manag Decis Econ 30(4):235–251

    Article  Google Scholar 

  • Abbas A, Bakir O, Klutke G, Sun Z (2013) Effects of risk aversion on value of information in two-action decision problems. Decis Anal 10(3):257–275

    Article  Google Scholar 

  • Arrow K (1965) Aspects of the theory of risk bearing. Academic, Helsinki

    Google Scholar 

  • Bickel E (2008) The relationship between perfect and imperfect information in a two-action risk-sensitive problem. Decis Anal 5(3):116–128

    Article  Google Scholar 

  • Delquie P (2008) The value of information and intensity of preference. Decis Anal 5(3):129–139

    Article  Google Scholar 

  • Hilton R (1981) The determinants of information value: synthesizing some general results. Manag Sci 27(1):57–64

    Article  Google Scholar 

  • Howard R (1966) Information value theory. IEEE Trans Syst Sci Cybern 2(1):22–26

    Article  Google Scholar 

  • Howard R (1967) Value of information lotteries. IEEE Trans Syst Sci Cybern 3(1):54–60

    Article  Google Scholar 

  • Huang C, Vertinsky I, Ziemba T (1977) Sharp bounds on the value of perfect information. Oper Res 25(1):128–139

    Article  Google Scholar 

  • Kihlstrom R, Romer D, Williams S (1981) Risk aversion with random initial wealth. Econometrica 49(4):911–920

    Article  Google Scholar 

  • LiCalzi M, Sorato A (2006) The Pearson system of utility functions. Eur J Oper Res 172(2):560–573

    Article  Google Scholar 

  • Machina M, Neilson W (1987) The ross characterization of risk aversion: strengthening and extension. Econometrica 55(5):1139–1149

    Article  Google Scholar 

  • Mehrez A (1985) The effects of risk aversion on the expected value of perfect information. Oper Res 33(2):455–458

    Article  Google Scholar 

  • Merkhofer W (1977) The value of information given decision flexibility. Manag Sci 23(7):716–727

    Article  Google Scholar 

  • Nadiminti R, Mukhopadhyay T, Kriebel C (1996) Risk aversion and the value of information. Decis Support Syst 16(3):241–254

    Article  Google Scholar 

  • Nielsen L (1985) Attractive compounds of unattractive investments and gambles. Scand J Econ 87:463–473

    Article  Google Scholar 

  • Pennings J, Smidts A (2003) The shape of utility functions and organizational behavior. Manag Sci 49(9):1251–1263

    Article  Google Scholar 

  • Pratt J (1964) Risk aversion in the small and the large. Econometrica 32(1/2):122–136

    Article  Google Scholar 

  • Pratt J, Raiffa H, Schlaifer R (1995) Introduction to statistical decision theory. The MIT Press, Cambridge

    Google Scholar 

  • Raiffa H, Schlaifer R (1961) Applied statistical decision theory. Harvard University, Cambridge

    Google Scholar 

  • Ross S (1981) Some stronger measures of risk aversion in the small and the large with applications. Econometrica 49(3):621–638

    Article  Google Scholar 

  • Ross S (1999) Adding risks: Samuelson’s fallacy of large numbers revisited. J Financ Quant Anal 34(3):323–339

    Article  Google Scholar 

  • Rubinstein M (1973) A comparative statics analysis of risk premiums. J Bus 46(4):605–615

    Article  Google Scholar 

  • Samuelson P (1963) Risk and uncertainty: a fallacy of large numbers. Scientia 98:108–113

    Google Scholar 

  • Schlaifer R (1959) Probability and statistics for business decisions. McGraw-Hill Book Company Inc., New York

    Google Scholar 

Download references

Acknowledgments

The authors thank the Editor, Associate Editor and two anonymous referees for their comments on content and exposition. This work was supported by the National Science Foundation awards SES 08-46417, CMMI 12-58482 and CMMI 13-01150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengwei Sun.

Appendix

Appendix

To simplify the notation, we denote A and B as the utility functions \(U_{A}\) and \(U_{B}\). We also denote \(a_{A}\) and \(a_{B}\) as \({\text{VOIA}}_{A}\) and \({\text{VOIA}}_{B}\), and \(r_{A}\) and \(r_{B}\) as \({\text{VOIR}}_{A}\) and \({\text{VOIR}}_{B}\).

Proof of Theorem 1

(i) \(\rightarrow\) (ii): We prove this direction in three steps.

Step 1

Define a strictly increasing and concave function G relating two utility functions.

Since B is strictly increasing, we can uniquely define a function G such that

$$E_{{\tilde{w}}} [A(x + \tilde{w})] = G(E_{{\tilde{w}}} [B(x + \tilde{w})]),\quad \forall x.$$

Taking the first derivative gives

$$E_{{\tilde{w}}} [A^{\prime } (x + \tilde{w})] = G^{\prime } (E_{{\tilde{w}}} [B(x + \tilde{w})]) \cdot E_{{\tilde{w}}} [B^{\prime } (x + \tilde{w})].$$
(10)

Since \(A^{\prime } ,B^{\prime } > 0\), we know that \(G^{\prime } > 0\)and that G is strictly increasing.

Taking the derivative of (10) gives

$$\begin{aligned} E_{{\tilde{w}}} [A^{\prime \prime } (x + \tilde{w})] & = G^{\prime \prime } (E_{{\tilde{w}}} [B(x + \tilde{w})]) \cdot \{ E_{{\tilde{w}}} [B^{\prime } (x + \tilde{w})]\}^{2} \\ \quad + G^{\prime } (E_{{\tilde{w}}} [B(x + \tilde{w})]) \cdot E_{{\tilde{w}}} [B^{\prime \prime } (x + \tilde{w})]. \\ \end{aligned}$$
(11)

The negative ratio of (11) to (10) gives

$$R_{A} (x;\tilde{w}) = - \frac{{E_{{\tilde{w}}} [A^{\prime \prime } (x + \tilde{w})]}}{{E_{{\tilde{w}}} [A^{\prime } (x + \tilde{w})]}} = - \frac{{G^{\prime \prime } (E_{{\tilde{w}}} [B(x + \tilde{w})])}}{{G^{\prime } (E_{{\tilde{w}}} [B(x + \tilde{w})])}}\quad E_{{\tilde{w}}} [B^{\prime } (x + \tilde{w})] - R_{A} (x;\tilde{w}).$$
(12)

Since \(R_{A} (x;\tilde{w}) \ge R_{B} (x;\tilde{w})\), we know that \(G^{\prime \prime } \le 0\) and that G is concave.

Step 2

Derive an inequality on the value of information for B from the concavity of G.

If \(x \ge 0\), then \(E_{{\tilde{w}}} [B(\tilde{w} + x)] \ge E_{{\tilde{w}}} [B(\tilde{w} + x - a_{B} )] \ge E_{{\tilde{w}}} [B(\tilde{w} - a_{B} )]\) and then

$$\begin{gathered} E_{{\tilde{w}}} [A(\tilde{w} + x)] - E_{{\tilde{w}}} [A(\tilde{w} + x - a_{B} )] \le G^{\prime } (E_{{\tilde{w}}} [B(\tilde{w} + x - a_{B} )])(E_{{\tilde{w}}} [B(\tilde{w} + x)] - E_{{\tilde{w}}} [B(\tilde{w} + x - a_{B} )]) \hfill \\ \le G^{\prime } (E_{{\tilde{w}}} [B(\tilde{w} - a_{B} )])(E_{{\tilde{w}}} [B(\tilde{w} + x)] - E_{{\tilde{w}}} [B(\tilde{w} + x - a_{B} )]), \hfill \\ \end{gathered}$$
(13)

since \(G^{\prime }\) is positive and monotonically decreasing. If \(x < 0\), then

$$E_{{\tilde{w}}} [A(\tilde{w} + x)] - E_{{\tilde{w}}} [A(\tilde{w} - a_{B} )] \le G^{\prime } (E_{{\tilde{w}}} [B(\tilde{w} - a_{B} )])(E_{{\tilde{w}}} [B(\tilde{w} + x)] - E_{{\tilde{w}}} [B(\tilde{w} - a_{B} )]).$$
(14)

From (13) and (14), we know that \(\forall x,\forall \tilde{w}\)

$$E_{{\tilde{w}}} [A(\tilde{w} + x)] - E_{{\tilde{w}}} [A(\tilde{w} + x^{ + } - a_{B} )] \le G^{\prime } (E_{{\tilde{w}}} [B(\tilde{w} - a_{B} )])(E_{{\tilde{w}}} [B(\tilde{w} + x)] - E_{{\tilde{w}}} [B(\tilde{w} + x^{ + } - a_{B} )]),$$
(15)

where \(x^{ + } = \hbox{max} \{ x,0\}\).

Step 3

Prove monotonicity using (15) and the independence assumption.

Since the lottery X is independent of the initial wealth, \(\tilde{w}\), taking expectations over X in both hand sides of (15) gives

$$E[A(\tilde{w} + X)] - E[A(\tilde{w} + X^{ + } - a_{B} )] \le G^{\prime } (E_{{\tilde{w}}} [B(\tilde{w} - a_{B} )])(E[B(\tilde{w} + X)] - E[B(\tilde{w} + X^{ + } - a_{B} )]) = 0.$$

The last equality is from the definition of \(a_{B} \triangleq {\text{VOIA}}_{B}\). Hence, \({\text{VOIA}}_{A} \triangleq a_{A} \ge a_{B} \triangleq {\text{VOIA}}_{B}\), since \(E[A(\tilde{w} + X)] = E[A(\tilde{w} + X^{ + } - a_{A} )]\) and A is strictly increasing.

(ii) \(\rightarrow\) (i): We show that (ii) implies (i) by comparing the Taylor’s expansion of the value of information on some small risk lotteries for the two decision makers. For any given x and uncertain initial wealth, \(\tilde{w}\), consider the new uncertain initial wealth, \(W = x + \tilde{w}\)and the independent lottery X with some small risk \(\epsilon > 0\) as following,

If p is sufficiently close to 1, then decision makers A and B will accept such lottery without the information and then \(E[A(W + X)] = E[A(W + X^{ + } - a_{A} )]\), i.e.,

$$pE[A(W + \epsilon )] + (1 - p)E[A(W - \epsilon )] = pE[A(W + \epsilon - a_{A} )] + (1 - p)E[A(W - a_{A} )].$$

The derivative of \(a_{A}\)with respect to \(\epsilon\),

$$\frac{{{\text{d}}a_{A} }}{{{\text{d}}\epsilon }} = \frac{{pE[A^{\prime } (W + \epsilon - a_{A} )] - pE[A^{\prime } (W + \epsilon )] + (1 - p)E[A^{\prime } (W - \epsilon )]}}{{pE[A^{\prime } (W + \epsilon - a_{A} )] + (1 - p)E[A^{\prime } (W - a_{A} )]}},$$
(16)

and \(a_{A} = 0\) when \(\epsilon = 0\). Therefore, its value at \(\epsilon = 0\),

$$\left. {\frac{{{\text{d}}a_{A} }}{{{\text{d}}\epsilon }}} \right|_{\epsilon = 0} = \frac{{pE[A^{\prime } (W)] - pE[A^{\prime } (W)] + (1 - p)E[A^{\prime } (W)]}}{{pE[A^{\prime } (W)] + (1 - p)E[A^{\prime } (W)]}} = 1 - p.$$

Denote \(a_{A}^{\prime } \triangleq \frac{{{\text{d}}a_{A} }}{{{\text{d}}\epsilon }}\), the second derivative of \(a_{A}\)with respect to \(\epsilon\),

$$\begin{gathered} \frac{{{\text{d}}^{2} a_{A} }}{{{\text{d}}\epsilon^{2} }} = \frac{{pE[A^{\prime \prime } (W + \epsilon - a_{A} )](1 - a_{A}^{\prime } ) - pE[A^{\prime \prime } (W + \epsilon )] - (1 - p)E[A^{\prime \prime } (W - \epsilon )]}}{{pE[A^{\prime } (W + \epsilon - a_{A} )] + (1 - p)E[A^{\prime } (W - a_{A} )]}} \hfill \\ \quad - \frac{{pE[A^{\prime } (W + \epsilon - a_{A} )] - pE[A^{\prime } (W + \epsilon )] + (1 - p)E[A^{\prime } (W - \epsilon )]}}{{(pE[A^{\prime } (W + \epsilon - a_{A} )] + (1 - p)E[A^{\prime } (W - a_{A} )])^{2} }} \hfill \\ \quad \cdot (p(1 - a_{A}^{\prime } )E[A^{\prime \prime } (W + \epsilon - a_{A} )] - (1 - p)a_{A}^{\prime } E[A^{\prime \prime } (W - a_{A} )]), \hfill \\ \end{gathered}$$

Since \(a_{A}^{\prime } (0) = \left. {\frac{{{\text{d}}a_{A} }}{{{\text{d}}\epsilon }}} \right|_{\epsilon = 0} = 1 - p\), the second derivative of \(a_{A}\) with respect to \(\epsilon\) at \(\epsilon = 0\),

$$\left. {\frac{{{\text{d}}^{2} a_{A} }}{{{\text{d}}\epsilon^{2} }}} \right|_{\epsilon = 0} = \{ p^{2} - p - (1 - p) - (1 - p)[p^{2} - (1 - p)^{2} ]\} \frac{{E[A^{\prime \prime } (W)]}}{{E[A^{\prime } (W)]}} = 3p(1 - p)R_{A} (W).$$

Hence, the Taylor’s expansion of \(a_{A}\) at \(\epsilon = 0\),

$$a_{A} = (1 - p)\epsilon + 3p(1 - p)R_{A} (W)\epsilon^{2} + o(\epsilon^{2} ).$$
(17)

Similarly, the Taylor’s expansion of \(a_{B}\) at \(\epsilon = 0\) is

$$a_{B} = (1 - p)\epsilon + 3p(1 - p)R_{B} (W)\epsilon^{2} + o(\epsilon^{2} ).$$
(18)

We know that \(a_{A} \ge a_{B}\) for any small \(\epsilon\) since decision maker A values the information higher than decision maker B when they both accept the lottery without the information. Hence, \(R_{A} (W) \ge R_{B} (W)\)by comparing their Taylor’s expansions in (17) and (18) since the residuals, \(o(\epsilon^{2} )\), are negligible when \(\epsilon\) is small.

Proof of Theorem 2

(i) \(\rightarrow\) (ii): Since X is independent of \(\tilde{w}\), then applying Jensen’s inequality on the concave function G gives

$$\begin{aligned} E[A(\tilde{w} + X^{ + } - {\text{VOIR}}_{B} )] & = E_{X} [G(E_{{\tilde{w}}} [B(\tilde{w} + X^{ + } - {\text{VOIR}}_{B} )])] \\ & \le G(E_{X} [E_{{\tilde{w}}} [B(\tilde{w} + X^{ + } - {\text{VOIR}}_{B} )]]) \\ & = G(E_{{\tilde{w}}} [B(\tilde{w})]) = E_{{\tilde{w}}} [A(\tilde{w})] = E[A(\tilde{w} + X^{ + } - {\text{VOIR}}_{A} )], \\ \end{aligned}$$

where \(E_{X} [ \cdot ]\) is the expectation operator taken over the lottery X. Since A is strictly increasing, then \({\text{VOIR}}_{A} \le {\text{VOIR}}_{B}\).

(ii) \(\rightarrow\) (i): We prove it by comparing the Taylor’s expansion of the value of information on a lottery with sufficient small risk. For any given x and uncertain initial wealth, \(\tilde{w}\), consider the new uncertain initial wealth, \(W = x + \tilde{w}\), and the independent lottery X in the proof of Theorem 1 (see Fig. 6). Decision makers A and B will both reject it without the information, if p is sufficiently small. From the definition of value of information, we know that

$$E[A(W)] = E[A(W + X^{ + } - r_{A} )] = pE[A(W + \epsilon - r_{A} )] + (1 - p)E[A(W - r_{A} )].$$
Fig. 6
figure 6

Binary lottery with small risk

The derivative of \(r_{A}\)with respect to \(\epsilon\),

$$\frac{{{\text{d}}r_{A} }}{{{\text{d}} \epsilon}} = \frac{{pE[A^{\prime } (W + \epsilon - r_{A} )]}}{{pE[A^{\prime } (W + \epsilon - r_{A} )] + (1 - p)E[A^{\prime } (W - r_{A} )]}},$$
(19)

and \(r_{A} = 0\) when \(\epsilon = 0\). Therefore, its value at \(\epsilon = 0\) is

$$\left. {\frac{{{\text{d}}r_{A} }}{{{\text{d}}\epsilon }}} \right|_{\epsilon = 0} = \frac{{pE[A^{\prime } (W)]}}{{pE[A^{\prime } (W)] + (1 - p)E[A^{\prime } (W)]}} = p.$$
(20)

Denote \(r_{A}^{\prime } \triangleq \frac{{{\text{d}}r_{A} }}{{{\text{d}}\epsilon }}\), the second derivative of \(r_{A}\) with respect to \(\epsilon\),

$$\begin{aligned} \frac{{{\text{d}}^{2} r_{A} }}{{{\text{d}}\epsilon^{2} }} & = \frac{{p(1 - r_{A}^{\prime } )E[A^{\prime \prime } (W + \epsilon - r_{A} )]}}{{pE[A^{\prime } (W + \epsilon - r_{A} )] + (1 - p)E[A^{\prime } (W - r_{A} )]}} \\ \quad - \frac{{pE[A^{\prime } (W + \epsilon - r_{A} )](p(1 - r_{A}^{\prime } )E[A^{\prime \prime } (W + \epsilon - r_{A} )] - (1 - p)r_{A}^{\prime } E[A^{\prime \prime } (W - r_{A} )])}}{{(pE[A^{\prime } (W + \epsilon - r_{A} )] + (1 - p)E[A^{\prime } (W - r_{A} )])^{2} }}. \\ \end{aligned}$$
(21)

Since \(r_{A}^{\prime } (0) = \left. {\frac{{{\text{d}}r_{A} }}{{{\text{d}}\epsilon }}} \right|_{\epsilon = 0} = p\), the second derivative of \(r_{A}\) with respect to \(\epsilon\) at \(\epsilon = 0\),

$$\left. {\frac{{{\text{d}}^{2} r_{A} }}{{{\text{d}}\epsilon^{2} }}} \right|_{\epsilon = 0} = p(1 - p)\frac{{E[A^{\prime \prime } (w)]}}{{E[A^{\prime } (W)]}} = - p(1 - p)R_{A} (W).$$

Hence, the Taylor’s expansion of \(r_{A}\) at \(\epsilon = 0\) is

$$r_{A} = (1 - p)\epsilon - p(1 - p)R_{A} (W)\epsilon^{2} + o(\epsilon^{2} ) .$$
(22)

Similarly, the Taylor’s expansion of \(r_{B}\) at \(\epsilon = 0\) is

$$r_{B} = (1 - p)\epsilon - p(1 - p)R_{B} (W)\epsilon^{2} + o(\epsilon^{2} ).$$
(23)

We know that \(r_{A} \le r_{B}\) for any small \(\epsilon\) since decision maker A values the information lower than decision maker B when they both reject the lottery without the information. Hence, \(R_{A} (W) \ge R_{B} (W)\)by comparing their Taylor’s expansion in (22) and (23) since the residuals, \(o(\epsilon^{2} )\), are negligible when \(\epsilon\) is small.

Proof of Theorem 3

(i) \(\rightarrow\) (ii): We denote \(F_{{\tilde{w}}} (w)\) as the marginal distribution of the initial wealth \(\tilde{w}\) and \(F_{{X|\tilde{w}}} (x|w)\) as the conditional distribution of the lottery X on the initial wealth \(\tilde{w}\), then the joint distribution of X and \(\tilde{w}\), \(F_{{X,\tilde{w}}} (x,w)\), satisfies \(F_{{X,\tilde{w}}} (x,w) = \int_{0}^{w} {F_{{X|\tilde{w}}} (x|t){\text{d}}F_{{\tilde{w}}} (t)}\). The proof is in three steps.

Step 1

Represent the value of information as the value of a continuous function \(\theta (\tau )\) at \(\tau = 1\).

For each \(\tau \in [0,1]\), define \(\theta (\tau )\) as the unique solution to

$$V_{A} (\tau ) = E[\tau A(\tilde{w} + X^{ + } - \theta (\tau )) + (1 - \tau )A(\tilde{w} + X + E[X^{ - } ] - \theta (\tau ))] = E[A(\tilde{w} + X)].$$

Direct calculation shows that \(\theta (0) = E[X^{ - } ]\) and that\(\theta (1) = a_{A}\). In addition,

$$\begin{aligned} 0 & = \frac{{{\text{d}}V_{A} (\tau )}}{{{\text{d}}\tau }} = \frac{\text{d}}{{{\text{d}}\tau }}\left\{ {E[\tau A(\tilde{w} + X^{ + } - \theta (\tau )) + (1 - \tau )A(\tilde{w} + X + E[X^{ - } ] - \theta (\tau ))]} \right\} \\ & = E[A(\tilde{w} + X^{ + } - \theta (\tau ))] - E[A(\tilde{w} + X + E[X^{ - } ] - \theta (\tau ))] \\ & \quad - \theta^{\prime } (\tau )\left\{ {\tau E[A^{\prime } (\tilde{w} + X^{ + } - \theta (\tau ))] + (1 - \tau )E[A^{\prime } (\tilde{w} + X + E[X^{ - } ] - \theta (\tau ))]} \right\}. \\ \end{aligned}$$

therefore,

$$\theta^{\prime } (\tau ) = - \frac{{E[A(\tilde{w} + X + E[X^{ - } ] - \theta (\tau ))] - E[A(\tilde{w} + X^{ + } - \theta (\tau ))]}}{{\tau E[A^{\prime } (\tilde{w} + X^{ + } - \theta (\tau ))] + (1 - \tau )E[A^{\prime } (\tilde{w} + X + E[X^{ - } ] - \theta (\tau ))]}}.$$
(24)

Step 2

Transform \(\theta^{\prime } (\tau )\) into the ratio of a summation of positive weighted integrals of \(A^{\prime \prime }\) to another summation of positive weighted integrals of \(A^{\prime }\).

Using the joint distribution \(F_{{X,\tilde{w}}} (x,w)\), we can rewrite the numerator of (24) as

$$E[A(\tilde{w} + X + E [X^{ - } ] - \theta (\tau ))] - E[A(\tilde{w} + X^{ + } - \theta (\tau ))] = \int\limits_{0}^{ + \infty } {{\text{I}}(w) - {\text{II}}(w) + {\text{III}}(w){\text{d}}F_{{\tilde{w}}} (w)} ,$$
(25)

where \(I \triangleq \int_{{ - E[X^{ - } ]}}^{0} {\int_{0}^{{x + E[X^{ - } ]}} {A^{\prime } (w + s - \theta (\tau )){\text{d}}s} {\text{d}}F_{{X|\tilde{w}}} (x|w)}\), \(II \triangleq \int_{ - \infty }^{{ - E[X^{ - } ]}} {\int_{{x + E[X^{ - } ]}}^{0} {A^{\prime}(w + s - \theta (\tau )){\text{d}}s} {\text{d}}F_{{X|\tilde{w}}} (x|w)}\),

$$III \triangleq \int\limits_{0}^{ + \infty } {\int\limits_{x}^{{x + E[X^{ - } ]}} {A^{\prime } (w + s - \theta (\tau )){\text{d}}s} {\text{d}}F_{{X|\tilde{w}}} (x|w)} .$$

Since \(E[X^{ - } |\tilde{w}] = E[X^{ - } ]\), then \(E[E[X^{ - } ] - X^{ - } |w] = 0\) and

$$0 = A^{\prime } (w - \theta (\tau ))E[E[X^{ - } ] - X^{ - } |w] = \int\limits_{0}^{ + \infty } {{\text{IV}}(w) - {\text{V}}(w) + {\text{VI}}(w){\text{d}}F_{{\tilde{w}}} (w)} ,$$
(26)

where \({\text{IV}} \triangleq \int_{{ - E[X^{ - } ]}}^{0} {\int_{0}^{{x + E[X^{ - } ]}} {A^{\prime } (w - \theta (\tau )){\text{d}}s} {\text{d}}F_{{X|\tilde{w}}} (x|w)}\), \(V \triangleq \int_{ - \infty }^{{ - E[X^{ - } ]}} {\int_{{x + E[X^{ - } ]}}^{0} {A^{\prime } (w - \theta (\tau )){\text{d}}s} {\text{d}}F_{{X|\tilde{w}}} (x|w)}\),

$$VI \triangleq \int\limits_{0}^{ + \infty } {\int\limits_{x}^{{x + E[X^{ - } ]}} {A^{\prime } (w - \theta (\tau )){\text{d}}s} {\text{d}}F_{{X|\tilde{w}}} (x|w)} .$$

Since \(\int_{a}^{b} {\left( {A^{\prime } (w + s - \theta (\tau )) - A^{\prime } (w - \theta (\tau ))} \right){\text{d}}s} = \int_{a}^{b} {\int_{0}^{s} {A^{\prime \prime } (w + t - \theta (\tau )){\text{d}}t} {\text{d}}s}\), then

$$I - IV = \int\limits_{{ - E[X^{ - } ]}}^{0} {\int\limits_{0}^{{x + E[X^{ - } ]}} {\int\limits_{0}^{s} {A^{\prime \prime } (w + t - \theta (\tau )){\text{d}}t} } {\text{d}}s{\text{d}}F_{{X|\tilde{w}}} (x|w)} ,$$
(27)
$$V - II = \int\limits_{ - \infty }^{{ - E[X^{ - } ]}} {\int\limits_{{x + E[X^{ - } ]}}^{0} {\int\limits_{s}^{0} {A^{\prime \prime } (w + t - \theta (\tau )){\text{d}}t} } {\text{d}}s{\text{d}}F_{{X|\tilde{w}}} (x|w)} ,$$
(28)

and

$$III - VI = \int\limits_{0}^{ + \infty } {\int\limits_{x}^{{x + E[X^{ - } ]}} {\int\limits_{0}^{s} {A^{\prime \prime } (w + t - \theta (\tau )){\text{d}}t} } {\text{d}}s{\text{d}}F_{{X|\tilde{w}}} (x|w)} .$$
(29)

Substituting from (26), (27), (28), and (29) into (25) gives a positive additive form of the integrals of \(A^{\prime \prime }\) for the numerator of (24) as

$$\begin{aligned} E[A(\tilde{w} + X + E[X^{ - } ] - \theta (\tau ))] - E[A(\tilde{w} + X^{ + } - \theta (\tau ))] \, & = \int\limits_{0}^{ + \infty } {\int\limits_{{ - E[X^{ - } ]}}^{0} {\int\limits_{0}^{{x + E[X^{ - } ]}} {\int\limits_{0}^{s} {A^{\prime \prime } (w + t - \theta (\tau )){\text{d}}t} } {\text{d}}s{\text{d}}F_{{X|\tilde{w}}} (x|w)} } {\text{d}}F_{{\tilde{w}}} (w) \\ & \quad + \int\limits_{0}^{ + \infty } {\int\limits_{ - \infty }^{{ - E[X^{ - } ]}} {\int\limits_{{x + E[X^{ - } ]}}^{0} {\int\limits_{s}^{0} {A^{\prime \prime } (w + t - \theta (\tau )){\text{d}}t} } {\text{d}}s{\text{d}}F_{{X|\tilde{w}}} (x|w)} } {\text{d}}F_{{\tilde{w}}} (w) \\ & \quad + \int\limits_{0}^{ + \infty } {\int\limits_{0}^{ + \infty } {\int\limits_{x}^{{x + E[X^{ - } ]}} {\int\limits_{0}^{s} {A^{\prime \prime } (w + t - \theta (\tau )){\text{d}}t} } {\text{d}}s{\text{d}}F_{{X|\tilde{w}}} (x|w)} } {\text{d}}F_{{\tilde{w}}} (w) \triangleq N(A^{\prime \prime } ) \\ \end{aligned}$$
(30)

The denominator of (24) can be expressed as positive summation of the integrals of \(A^{\prime }\), \(M(A^{\prime } )\),

$$\begin{aligned} \tau E[A^{\prime } (\tilde{w} + X^{ + } - \theta (\tau ))] + (1 - \tau )E[A^{\prime } (\tilde{w} + X + E[X^{ - } ] - \theta (\tau ))] & = \tau \int\limits_{0}^{ + \infty } {\int\limits_{ - \infty }^{0} {A^{\prime } (w - \theta (\tau ))F_{{X|\tilde{w}}} (x|w)} } {\text{d}}F_{{\tilde{w}}} (w) + \tau \int\limits_{0}^{ + \infty } {\int\limits_{0}^{ + \infty } {A^{\prime } (w + x - \theta (\tau ))F_{{X|\tilde{w}}} (x|w)} } {\text{d}}F_{{\tilde{w}}} (w) \\ & \quad + (1 - \tau )\int\limits_{0}^{ + \infty } {\int\limits_{ - \infty }^{ + \infty } {A^{\prime } (w + x + E[X^{ - } ] - \theta (\tau ))F_{{X|\tilde{w}}} (x|w)} } {\text{d}}F_{{\tilde{w}}} (w) \triangleq M(A^{\prime } ). \\ \end{aligned}$$
(31)

Step 3

Prove that (ii) implies (i) by applying Machina and Neilson’s result.

For each \(\tau \in [0,1]\), define \(\bar{\theta }(\tau )\) as the unique solution to

$$\begin{aligned} V_{B} (\tau ) & = E[\tau B(\tilde{w} + X^{ + } - \bar{\theta} (\tau )) + (1 - \tau )B(\tilde{w} + X + E[X] - \bar{\theta} (\tau ))] \\ & = E[B(\tilde{w} + X^{ + } - a_{B} )] = E[B(\tilde{w} + X)]. \\ \end{aligned}$$

Similar to the argument for \(V_{A} (\tau )\), we know that \(\bar{\theta }(0) = E[X^{ - } ],\bar{\theta }(1) = a_{B}\), and that

$$\theta^{\prime } (\tau ) = - \frac{{N(A^{\prime \prime } )}}{{M(A^{\prime } )}} \ge - \frac{{N(B^{\prime\prime})}}{{M(B^{\prime})}} = \bar{\theta }^{\prime } (\tau ),\quad \forall \tau \in [0,1],$$

The inequality is due to Machina and Neilson (1987) since \(\gamma_{A} (x) \ge_{S} \gamma_{B} (x)\). Since \(\bar{\theta }(0) = \theta (0) = E[X^{ - } ]\), then \(a_{A} = \theta (1) \ge \bar{\theta }(1) = a_{B}\).

(ii) \(\rightarrow\) (i): We prove that (ii) implies (i) by comparing Taylor’s expansion of the value of information on such lottery for the two decision makers.

Step 1

Calculate Taylor’s expansion of the value of information for a small risk lottery.

Consider the uncertain initial wealth, \(\tilde{w}\), and the lottery, X, in the Fig. 7:

Fig. 7
figure 7

Binary initial wealth and conditional binary distributed small risk lottery

Note that the condition expectation of the potential loss on the uncertain initial wealth, \(E[X^{ - } |\tilde{w}]\), is constant whatever the initial wealth is. More precisely, \(E[X^{ - } |\tilde{w}] = E[X^{ - } ] = \tfrac{1}{2}\epsilon\). Moreover, if k is large enough, then two decision makers will both accept the lottery without the information. Statement (ii) indicates \(a_{A} \ge a_{B} ,\forall x,y,p,k,\epsilon\) in this case. The definition of \(a_{A}\) gives

$$\begin{gathered} \tfrac{p}{2}\left\{ {\left. {A(x + k\epsilon ) + A(x - \epsilon )} \right\}} \right. + \tfrac{1 - p}{2}\left\{ {A(y + \epsilon ) + A(y - \epsilon )} \right\} \hfill \\ = 0.5p\left\{ {\left. {A(x + k\epsilon - a_{A} ) + A(x - a_{A} )} \right\}} \right. + 0.5(1 - p)\left\{ {A(y + \epsilon - a_{A} ) + A(y - a_{A} )} \right\}. \hfill \\ \end{gathered}$$

Straight forward calculation shows that \(a_{A} = 0\) when \(\epsilon = 0\). Differentiating both hand sides with respect to \(\epsilon\) gives

$$\begin{aligned} \frac{{{\text{d}}a_{A} }}{{{\text{d}}\epsilon }} & = \frac{{p\left\{ {kA^{\prime } (x + k\epsilon - a_{A} ) - kA^{\prime } (x + k\epsilon ) + A^{\prime } (x - \epsilon )} \right\}}}{{pA^{\prime } (x + k\epsilon - a_{A} ) + pA^{\prime } (x - a_{A} ) + (1 - p)\{ A^{\prime } (y + \epsilon - a_{A} ) + A^{\prime } (y - a_{A} )\} }} \\ & \quad + \frac{{(1 - p)\left\{ {\left. {A^{\prime } (y + \epsilon - a_{A} ) - A^{\prime } (y + \epsilon ) + A^{\prime } (y - \epsilon )} \right\}} \right.}}{{pA^{\prime } (x + k\epsilon - a_{A} ) + pA^{\prime } (x - a_{A} ) + (1 - p)\{ A^{\prime } (y + \epsilon - a_{A} ) + A^{\prime } (y - a_{A} )\} }}, \\ \end{aligned}$$

and \(\left. {\frac{{{\text{d}}a_{A} }}{{{\text{d}}\epsilon }}} \right|_{\epsilon = 0} = 0.5\).

Differentiating \(\frac{{{\text{d}}a_{A} }}{{{\text{d}}\epsilon }}\) with respect to \(\epsilon\) at \(\epsilon = 0\) gives

$$\left. {\frac{{{\text{d}}^{2} a_{A} }}{{{\text{d}}\epsilon^{2} }}} \right|_{\epsilon = 0} = - \frac{{p(2k + 1)A^{\prime \prime } (x) + 3(1 - p)A^{\prime \prime } (y)}}{{4(pA^{\prime } (x) + (1 - p)A^{\prime } (y))}}.$$

Since \(a_{A} = 0\) when \(\epsilon = 0\), the Taylor’s expansion of \(a_{A}\) at \(\epsilon = 0\) is

$$a_{A} = \frac{\epsilon }{2} - \frac{{p(2k + 1)A^{\prime \prime } (x) + 3(1 - p)A^{\prime \prime } (y)}}{{4(pA^{\prime } (x) + (1 - p)A^{\prime } (y))}}\epsilon^{2} + o(\epsilon^{2} ),$$
(32)

Similarly, the Taylor’s expansion of \(a_{A}\) at \(\epsilon = 0\) is

$$a_{B} = \frac{\epsilon }{2} - \frac{{p(2k + 1)B^{\prime \prime } (x) + 3(1 - p)B^{\prime \prime } (y)}}{{4(pB^{\prime } (x) + (1 - p)B^{\prime } (y))}}\epsilon^{2} + o(\epsilon^{2} ).$$
(33)

Step 2

Compare Taylor’s expansions for particular parameters.

It follows that \(a_{A} \ge a_{B}\) for all such lotteries and initial wealth only if (\(\forall x,y,p,k\))

$$- \frac{{p(2k + 1)A^{\prime \prime } (x) + 3(1 - p)A^{\prime \prime } (y)}}{{pA^{\prime } (x) + (1 - p)A^{\prime } (y)}} \ge - \frac{{p(2k + 1)B^{\prime \prime } (x) + 3(1 - p)B^{\prime \prime } (y)}}{{pB^{\prime } (x) + (1 - p)B^{\prime } (y)}}.$$

If \(- \frac{{A^{\prime \prime } (x)}}{{pA^{\prime } (x) + (1 - p)A^{\prime } (y)}} < - \frac{{B^{\prime \prime } (x)}}{{pB^{\prime } (x) + (1 - p)B^{\prime } (y)}}\) for some x, y, and p, then we have a contradiction for k sufficiently large. Hence (\(\forall x,y,p\)),

$$- \frac{{A^{\prime \prime } (x)}}{{pA^{\prime } (x) + (1 - p)A^{\prime } (y)}} \ge - \frac{{B^{\prime \prime } (x)}}{{pB^{\prime } (x) + (1 - p)B^{\prime } (y)}}.$$

If for some x and y, \(- \frac{{A^{\prime \prime } (x)}}{{A^{\prime } (y)}} < - \frac{{B^{\prime \prime } (x)}}{{B^{\prime } (y)}},\) then for p sufficiently small we have a contradiction. Hence (\(\forall x,y\)), \(- \frac{{A^{\prime \prime } (x)}}{{A^{\prime } (y)}} \ge - \frac{{B^{\prime \prime } (x)}}{{B^{\prime } (y)}}\), i.e., \(\gamma_{A} \ge_{S} \gamma_{B}\).

Proof of Theorem 4

(i) \(\rightarrow\) (ii): Denote \(CE(A(x + \tilde{w}),X)\) and \(CE(B(x + \tilde{w}),X)\) as the certain equivalents of the lottery, X, for A and B with initial wealth, \(\tilde{w}\), respectively. Then

$$E[A(\tilde{w} + X)] = E[A(\tilde{w} + CE(A(x + \tilde{w}),X))],$$

and

$$E[B(\tilde{w} + X)] = E[B(\tilde{w} + CE(B(x + \tilde{w}),X))].$$

If \(E[X^{ + } |\tilde{w}] = E[X^{ + } ]\), then \(E[X^{ + } |(\tilde{w} - {\text{VOIR}}_{A} )] = E[X^{ + } ]\). Machina and Neilson (1987) showed that if \(\gamma_{A} \ge_{S} \gamma_{B}\) and if \(E[X^{ + } |(\tilde{w} - {\text{VOIR}}_{A} )] = E[X^{ + } ]\), then

$$CE(A(x + \tilde{w} - {\text{VOIR}}_{A} ),X^{ + } ) \le CE(B(x + \tilde{w} - {\text{VOIR}}_{A} ),X^{ + } ).$$

By directly comparing the definitions of certain equivalent and the value of information in (5), we know that \({\text{VOIR}}_{A} = CE(A(x + \tilde{w} - {\text{VOIR}}_{A} ),X^{ + } )\). Since B is monotonically increasing, we have

$$\begin{aligned} E[B(\tilde{w} - {\text{VOIR}}_{A} + X^{ + } )] & = E[B(\tilde{w} - {\text{VOIR}}_{A} + CE(B(x + \tilde{w} - {\text{VOIR}}_{A} ),X^{ + } ))] \\ & \ge E[B(\tilde{w} - {\text{VOIR}}_{A} + CE(A(x + \tilde{w} - {\text{VOIR}}_{A} ),X^{ + } ))] \\ & = E[B(\tilde{w} - {\text{VOIR}}_{A} + {\text{VOIR}}_{A} )] = E[B(\tilde{w})] = E[B(\tilde{w} - {\text{VOIR}}_{B} + X^{ + } )]. \\ \end{aligned}$$

Therefore, \({\text{VOIR}}_{A} \le {\text{VOIR}}_{B}\), Since B is monotonically increasing.

(ii) \(\rightarrow\) (i): We prove that (ii) implies (i) by comparing Taylor’s expansion of the value of information on such lottery for the two decision makers.

Step 1

Calculate Taylor’s expansion of the value of information for a small risk lottery.

Again consider the uncertain initial wealth \(\tilde{w}\) and the lottery X in the Fig. 8.

Fig. 8
figure 8

Binary initial wealth and conditional binary lottery with small risk

Then, the condition expectation of potential gain on the uncertain initial wealth, \(E[X|\tilde{w}]\) is constant. More precisely, \(E[X^{ + } |\tilde{w}] = 0.5\epsilon\), either \(\tilde{w} = x\) or \(\tilde{w} = y\). Moreover, two decision makers will both reject the lottery without the information when k is large enough. Hence, statement (ii) indicates that \(r_{A} \le r_{B} ,\forall x,y,p,k,\epsilon\) in this case. From the definition of \(r_{A}\), we have

$$pA(x) + (1 - p)A(y) = \frac{p}{2k}\left\{ {\left. {A(x + k\epsilon - r_{A} ) + (2k - 1)A(x - r_{A} )} \right\}} \right. + \frac{1 - p}{2}\left\{ {A(y + \epsilon - r_{A} ) + A(y - r_{A} )} \right\}.$$

Differentiating both hand sides with respect to \(\epsilon\) gives

$$\frac{{{\text{d}}r_{A} }}{{{\text{d}}\epsilon }} = \frac{{kpA^{\prime } (x + k\epsilon - r_{A} ) + k(1 - p)A^{\prime } (y + \epsilon - r_{A} )}}{{pA^{\prime } (x + k\epsilon - r_{A} ) + (2k - 1)pA^{\prime } (x - r_{A} ) + k(1 - p)\{ A^{\prime } (y + \epsilon - r_{A} ) + A^{\prime } (y - r_{A} )\} }}$$

and \(\left. {\frac{{{\text{d}}r_{A} }}{{{\text{d}}\epsilon }}} \right|_{\epsilon = 0} = 0.5\).

Differentiating \(\frac{{{\text{d}}r_{A} }}{{{\text{d}}\epsilon }}\)with respect to \(\epsilon\)again at \(\epsilon = 0\) gives

$$\left. {\frac{{{\text{d}}^{2} r_{A} }}{{{\text{d}}\epsilon ^{2} }}} \right|_{\epsilon = 0} = \frac{{p(2k - 1)A^{\prime \prime } (x) + (1 - p)A^{\prime \prime } (y)}}{{4(pA^{\prime } (x) + (1 - p)A^{\prime } (y))}}.$$

Since \(a_{A} = 0\) when \(\epsilon = 0\), the Taylor’s expansion of \(a_{A}\) at \(\epsilon = 0\)is

$$r_{A} = \frac{\epsilon }{2} + \frac{{p(2k - 1)A^{\prime \prime } (x) + (1 - p)A^{\prime \prime } (y)}}{{4(pA^{\prime } (x) + (1 - p)A^{\prime } (y))}}\epsilon^{2} + o(\epsilon^{2} ),$$
(34)

Similarly, the Taylor’s expansion of \(a_{A}\)at \(\epsilon = 0\) is

$$r_{B} = \frac{\epsilon }{2} + \frac{{p(2k - 1)B^{\prime \prime } (x) + (1 - p)B^{\prime \prime } (y)}}{{4(pB^{\prime } (x) + (1 - p)B^{\prime } (y))}}\epsilon^{2} + o(v^{2} ).$$
(35)

Step 2

Compare Taylor’s expansions for the particular chosen parameters.

It follows that \(r_{A} \le r_{B}\) for all such lotteries and initial wealth only if (\(\forall x,y,p,k\))

$$\frac{{p(2k-1)A^{\prime \prime } (x) + (1 - p)A^{\prime \prime } (y)}}{{pA^{\prime } (x) + (1 - p)A^{\prime } (y)}} \le \frac{{p(2k - 1)B^{\prime \prime } (x) + (1 - p)B^{\prime \prime } (y)}}{{pB^{\prime } (x) + (1 - p)B^{\prime } (y)}}.$$

If \(\frac{{A^{\prime \prime } (x)}}{{pA^{\prime } (x) + (1 - p)A^{\prime } (y)}} > \frac{{B^{\prime \prime } (x)}}{{pB^{\prime } (x) + (1 - p)B^{\prime } (y)}}\) for some x, y, and p, then we have a contradiction for k sufficiently large. Hence (\(\forall x,y,p\)),

$$\frac{{A^{\prime \prime } (x)}}{{pA^{\prime } (x) + (1 - p)A^{\prime } (y)}} \le \frac{{B^{\prime \prime } (x)}}{{pB^{\prime } (x) + (1 - p)B^{\prime } (y)}}.$$

If for some x and y, \(\frac{{A^{\prime \prime } (x)}}{{A^{\prime } (y)}} > \frac{{B^{\prime \prime } (x)}}{{B^{\prime } (y)}},\) then for p sufficiently small we have a contradiction. Hence (\(\forall x,y\)), \(- \frac{{A^{\prime \prime } (x)}}{{A^{\prime } (y)}} \ge - \frac{{B^{\prime \prime } (x)}}{{B^{\prime } (y)}}\), i.e., \(\gamma_{A} \ge_{S} \gamma_{B}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Z., Abbas, A.E. On the sensitivity of the value of information to risk aversion in two-action decision problems. Environ Syst Decis 34, 24–37 (2014). https://doi.org/10.1007/s10669-013-9477-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10669-013-9477-y

Keywords

Navigation