The Environmentalist

, Volume 32, Issue 3, pp 300–310 | Cite as

The plight of pollination and the interface of neurobiology, ecology and food security

  • Peter G. KevanEmail author
  • Randolf Menzel


Insect neurobiology and cognition are most fully understood through studies on European honeybees (Apis mellifera ssp.; Hymenoptera: Apidae). Karl von Frisch (1886–1982) became a Nobel Laureate in Medicine and Physiology (1973) for his pioneering research on honeybee behaviour, learning and social communication (von Frisch Tanzsprache und Orientierung der Bienen. Springer, Berlin,1965, The dance language and orientation of bees. Harvard University Press, Cambridge,1967). His enduring work stimulated numerous prominent scientists, including Martin Lindauer (1918–2008) who was mentor to R. M., and whose nomination provided P. K. with a DAAD fellowship to work with his team in the Institut für Neurobiologie of the Freie Universität Berlin in 1994. Honeybees are the most important managed pollinators of crop plants and responsible for estimated billions of dollars worth of food production annually. Although these insects make excellent subjects for basic research, understanding their biology often has immediate practical implications. Honeybees, and beekeeping, around the world appear to be facing serious problems to such a grave extent that the popular media are full of stories about their demise and the potential consequences to human food security. How honeybees perceive their world, especially the flowers they pollinate, and how they react to stresses in their environments (management, pathogens, parasites, pesticides, pollutants and landscape changes) are closely interlinked. Therefore, the relationships between basic and applied research become of immediate importance and may lead to a better handling of the ecological conditions under which honeybees perform their economically important contribution to the balance of nature.


Bees Hymenoptera Apoidea Pollination Foraging Navigation Perception Sensory physiology Neurobiology Memory Learning Food security Conservation Flower relations 



We express thanks for opportunity given to present our thoughts at the conference ‘Facing the Four Elements: Developing a Transatlantic Approach to Sustainability’ for alumni of the German Academic Exchange Service (DAAD), the Alexander von Humboldt Foundation, and the German Center for Research and Innovation, New York, October 28–30, 2010. Through the DAAD, we have explored a global interdisciplinary issue with Europe and North America as leading lights and cooperating transatlantically. P.K. also acknowledges support from the Canadian Pollination Initiative (NSERC-CANPOLIN) from which this is contribution 40.


  1. Aebi A, Neumann P (2011) Endosymbionts and honey bee colony losses? Trends Ecol Evol 26:494CrossRefGoogle Scholar
  2. Aebi A, Vaissière BE, vanEngelsdorp D, Delaplane KS, Roubik DW, Neumann P (2011) Back to the future: Apis versus non-Apis pollination. Trends Ecol Evol. Published online 23 Dec 2011.
  3. Aizen M, Garibaldi LA, Cunningham SA, Klein AM (2008) Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr Biol 18:1572–1575CrossRefGoogle Scholar
  4. Aizen M, Garibaldi LA, Cunningham SA, Klein AM (2009) How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Ann Bot 103:1579–1588CrossRefGoogle Scholar
  5. Ashman TL, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, Dudash MR, Johnston MO, Mazer SJ, Mitchell RJ, Morgan MT, Wison WG (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85:2408–2421CrossRefGoogle Scholar
  6. Alaux C, Ducloz F, Crauser D, Le Conte Y (2010) Diet effects on honeybee immunocompetence. Biol Lett 6:562–565CrossRefGoogle Scholar
  7. Backhaus WGK, Kliegl R, Werner JS (eds) (1998) Color vision—perspectives from different disciplines. De Gruyter, BerlinGoogle Scholar
  8. Backhaus WGK, Menzel R, Kreissl S (1987) Multidimensional scaling of color similarity in bees. Biol Cybern 56:293–304CrossRefGoogle Scholar
  9. Baker HG, Baker I (1983) A brief historical review of the chemistry of floral nectars. In: Bentley B, Elias T (eds) The biology of nectaries. Columbia University Press, New York, pp 126–152Google Scholar
  10. Baker HG, Baker I (1990) The predictive value of nectar chemistry to the recognition of pollinator types. Israel J Bot 39:157–166Google Scholar
  11. Barth FG (1982) Biologie einer Begegnung: Die Partnerschaft der Insekten und Blumen. Deutsche Verlags-Anstalt, MünchenGoogle Scholar
  12. Barth FG (1991) Insects and flowers: the biology of a partnership (trans: Biederman-Thorson MA). Princeton University Press, PrincetonGoogle Scholar
  13. Beier W, Medugorac I, Lindauer M (1968) Synchronisation et dissociation de “l’horloge interne” des abeilles par facteurs externes. Annales Epiphyties 19:133–144Google Scholar
  14. Chittka L, Thomson JD (2005) Cognitive ecology of pollination: animal behaviour and floral evolution. Cambridge University Press, CambridgeGoogle Scholar
  15. Chittka L, Shmida A, Troje N, Menzel R (1994) Ultraviolet as a component of flower reflections, and the colour perception of Hymenoptera. Vis Res 34:1489–1508CrossRefGoogle Scholar
  16. Corbet SA (1991) Honey bees forever —reply. Trends Ecol Evol 6:338CrossRefGoogle Scholar
  17. Currie RW, Pernal SF, Guzman-Novoa E (2010) Honey bee colony losses in Canada. J Apic Res 49:104–106CrossRefGoogle Scholar
  18. Dafni A, Lehrer M, Kevan PG (1997) Spatial flower parameters and insect spatial vision. Biol Rev 72:239–282CrossRefGoogle Scholar
  19. Daily GC (ed) (1997) Nature’s services: societal dependence on natural ecosystems. Island Press, WashingtonGoogle Scholar
  20. Davis AR (1997) Pollination efficiency of insects. In: Shivanna KR, Sawhney VK (eds) Pollen biotechnology for crop production and improvement. Cambridge University Press, Cambridge, pp 87–120CrossRefGoogle Scholar
  21. De Jong D, da Silva EJ, Kevan PG, Atkinson JL (2009) Pollen substitutes increase honey bee haemolymph protein levels as much as or more than does pollen. J Apic Res 48:34–37CrossRefGoogle Scholar
  22. Dudareva N, Pichersky E (eds) (2006) Biology of floral scent. CRC Press, Boca RatonGoogle Scholar
  23. Free JB (1993) Insect pollination of crops, 2nd edn. Academic Press, LondonGoogle Scholar
  24. Gallai N, Salles JM, Settele J, Vaissiere BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68:810–821CrossRefGoogle Scholar
  25. Galizia CG, Menzel R (2000) Odour perception in honey bees: coding information in glomerular patterns. Curr Opin Neurobiol 10:504–510CrossRefGoogle Scholar
  26. Galizia CG, Kunze J, Gumbert A, Borg-Karlson A-K, Sachse S, Markl C, Menzel R (2005) Relationship of visual and olfactory signal parameters in a food-deceptive flower mimicry system. Behav Ecol 16:159–168CrossRefGoogle Scholar
  27. Garibaldi LA, Aizen MA, Klein AM, Cunningham SA, Harder LD (2011) Global growth and stability of agricultural yield decrease with pollinator dependence. Proc Natl Acad Sci USA 108:5909–5914CrossRefGoogle Scholar
  28. Gegear RJ, Laverty TM (1995) Effect of flower complexity on relearning flower-handling skills in bumble bees. Can J Zool 73:2052–2058CrossRefGoogle Scholar
  29. Gegear RJ, Laverty TM (1998) How many flower types can bumble bees work at the same time? Can J Zool 76:1358–1365CrossRefGoogle Scholar
  30. Gegear RJ, Laverty TM (2005) Flower constancy in bumblebees: a test of the trait variability hypothesis. Anim Behav 69:939–949CrossRefGoogle Scholar
  31. Ghazoul J (2005) Buzziness as usual? Questioning the global pollination crisis. Trends Ecol Evol 20:367–373CrossRefGoogle Scholar
  32. Giurfa M, Eichmann B, Menzel R (1996a) Symmetry perception in an insect. Nature 382:458–461CrossRefGoogle Scholar
  33. Giurfa M, Menzel R (1997) Insect visual perception: complex abilities of simple nervous systems. Curr Opin Neurobiol 7:505–513CrossRefGoogle Scholar
  34. Giurfa M, Vorobyev M, Kevan PG, Menzel R (1996b) Detection of coloured stimuli by honey bees: minimum visual angles and receptor specific contrasts. J Comp Physiol A 178:699–709CrossRefGoogle Scholar
  35. Giurfa M, Zhang SW, Jenett A, Menzel R, Srinivasan MV (2001) The concepts of ‘sameness’ and ‘difference’ in an insect. Nature 410:930–933CrossRefGoogle Scholar
  36. Greggers U, Mauelshagen J (1997) Matching behavior of honey bees in a multiple-choice situation: the differential effect of environmental stimuli on the choice process. Anim Learn Behav 25:458–472CrossRefGoogle Scholar
  37. Greggers U, Menzel R (1993) Memory dynamics and foraging strategies of honey bees. Behav Ecol Sociobiol 32:17–29CrossRefGoogle Scholar
  38. Heinrich B (1976) The foraging specializations of individual bumble bees. Ecol Monogr 46:105–128CrossRefGoogle Scholar
  39. Heinrich B (1979a) Majoring and minoring by foraging bumble bees, Bombus vagans, an experimental analysis. Ecology 60:245–255CrossRefGoogle Scholar
  40. Heinrich B (1979b) Bumble bee economics. Harvard University Press, CambridgeGoogle Scholar
  41. Hocking B (1953) The intrinsic range and speed of flight of insects. Trans R Entomol Soc Lond 104:223–345Google Scholar
  42. Horridge GA (1975) Compound eye and vision of insects. Oxford Univ Press, OxfordGoogle Scholar
  43. Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant-pollinator interactions. Ann Rev Ecol Syst 29:83–112CrossRefGoogle Scholar
  44. Kevan PG (1972) Floral colours in the high arctic with reference to insect flower relations and pollination. Can J Bot 50:2289–2316CrossRefGoogle Scholar
  45. Kevan PG (1997) Pollination biology and plant breeding systems. In: Shivanna KR, Sawhney VK (eds) Pollen biotechnology for crop production and improvement. Cambridge University Press, Cambridge, pp 59–83CrossRefGoogle Scholar
  46. Kevan PG (1999) Pollinators as bioindicators of the state of the environment: species, activity and diversity. Agric Ecosyst Environ 74:373–393CrossRefGoogle Scholar
  47. Kevan PG (2001) Pollination: plinth, pedestal, and pillar for terrestrial productivity. The why, how, and where of pollination protection, conservation, and promotion. In: Stubbs CS, Drummond FA (eds) Bees and crop pollination—crisis, crossroads, conservation (Thomas Say Publications in Entomology. Entomological Society of America, Lanham, pp 7–68Google Scholar
  48. Kevan PG (2003) The modern science of ambrosiology: in honour of Herbert and Irene Baker. Plant Syst Evol 238:1–5Google Scholar
  49. Kevan PG (2010) Bees, biology and management. Enviroquest Ltd, CambridgeGoogle Scholar
  50. Kevan PG, Backhaus WKG (1998) Color vision: ecology and evolution in making the best of the photic environment. In: Backhaus WGK, Kliegl R, Werner JS (eds) Color vision—perspectives from different disciplines. De Gruyter, Germany, pp 163–183CrossRefGoogle Scholar
  51. Kevan PG, Baker HG (1983) Insects as flower visitors and pollinators. Annu Rev Entomol 28:407–453CrossRefGoogle Scholar
  52. Kevan PG, Baker HG (1998) Insects on flowers. In: Huffaker CB, Gutierrez AP (eds) Ecological entomology. Wiley, New York, chap. 17, 2nd edn, pp 553–584Google Scholar
  53. Kevan PG, Ebert T (2005) Can almond nectar & pollen poison honey bees? Am Bee J 145:507–509Google Scholar
  54. Kevan PG, Imperatriz-Fonseca V (eds) (2006) Pollinating bees: the conservation link between agriculture and nature. Ministry of Environment, BrasíliaGoogle Scholar
  55. Kevan PG, Lane MA (1985) Flower petal microtexture is a tactile cue for bees. Proc Natl Acad Sci USA 82:4750–4752CrossRefGoogle Scholar
  56. Kevan PG, Phillips TP (2001) The economic impacts of pollinator declines: an approach to assessing the consequences. Conserv Ecol 5.
  57. Kevan PG, Wojcik VA (2007) Pollinator services. In: Jarvis DI, Paddoch C, Cooper HD (eds) Managing biodiversity in agricultural ecosystems. Columbia University Press, New York, pp 200–223Google Scholar
  58. Kevan PG, Chaloner WG, Savile DBO (1975) Interrelationships of early terrestrial arthropods and plants. Palaeontology (Oxford) 18:391–418Google Scholar
  59. Kevan PG, Chittka L, Dyer AG (2001) Limits to the salience of ultraviolet: lessons from colour vision in bees and birds. J Exp Biol 204:2571–2580Google Scholar
  60. Kevan PG, Giurfa M, Chittka L (1996) Why are there so many and so few white flowers? Trends Plant Sci 1:280–284CrossRefGoogle Scholar
  61. Kevan PG, Kapango JP, Al-mazra’awi MS, Shipp L (2008) Honey bees, bumble bees, and biocontrol: new alliances between old friends. In: James RR, Pitts-Singer TL (eds) Bee pollination in agricultural ecosystems. Oxford University Press, Oxford, pp 65–79CrossRefGoogle Scholar
  62. Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B Biol Sci 274:303–313CrossRefGoogle Scholar
  63. Koltermann R (1971) 24-Std-Periodik in der Langzeiterinnerung an Duft- und Farbsignale bei der Honigbiene. Zietschrift für vergliechende Physiologie 75:49–68CrossRefGoogle Scholar
  64. Kron P, Husband BC, Kevan PG (2001a) Across- and along-row pollen dispersal in high-density apple orchards: insights from allozyme markers. J Hortic Sci Biotechnol 76:286–294Google Scholar
  65. Kron P, Husband BC, Kevan PG, Belaousoff S (2001b) Factors affecting pollen dispersal in high-density apple orchards. HortScience 36:1039–1046Google Scholar
  66. Laska M, Galizia CG, Giurfa M, Menzel R (1999) Olfactory discrimination ability and odor structure—activity relationships in honey bees. Chem Senses 24:429–438CrossRefGoogle Scholar
  67. Laverty TM (1980) The flower visiting behavior of bumblebees, Bombus spp.: floral complexity and learning. Can J Zool 58:1324–1335CrossRefGoogle Scholar
  68. Laverty TM (1994) Bumble bee learning and flower morphology. Anim Behav 47:531–545CrossRefGoogle Scholar
  69. Lovelock J (1979) Gaia: a new look at life on earth. Oxford University Press, OxfordGoogle Scholar
  70. Menzel R (1993) Associative learning in honey-bees. Apidologie 24:157–168CrossRefGoogle Scholar
  71. Menzel R (1999) Memory dynamics in the honey bee. J Comp Physiol A 185:323–340CrossRefGoogle Scholar
  72. Menzel R (2001) Behavioral and neural mechanisms of learning and memory as determinants of flower constancy. In: Chittka L, Thomson JD (eds) Cognitive ecology of pollination, animal behavior and floral evolution. Cambridge University Press, Cambridge, pp 21–40CrossRefGoogle Scholar
  73. Menzel R (2009) Serial position learning in honey bees. PLoS ONE 4(3):e4694CrossRefGoogle Scholar
  74. Menzel R, Muller U (1996) Learning and memory in honey bees: from behavior to neural substrates. Annu Rev Neurosci 19:379–404CrossRefGoogle Scholar
  75. Menzel R, Shmida A (1993) The ecology of flower colours and the natural colour vision of insect pollinators: the Israeli flora as a study case. Biol Rev 68:81–120CrossRefGoogle Scholar
  76. Menzel R, DeMarco RJ, Greggers U (2006) Spatial memory, navigation and dance behaviour in Apis mellifera. J Comp Physiol A 192:889–903CrossRefGoogle Scholar
  77. Menzel R, Geiger K, Chittka L, Joerges J, Kunze J, Muller U (1996) The knowledge base of bee navigation. J Exp Biol 199:141–146Google Scholar
  78. Menzel R, Geiger K, Joerges J, Muller U, Chittka L (1998) Bees travel novel homeward routes by integrating separately acquired vector memories. Anim Behav 55:139–152CrossRefGoogle Scholar
  79. Menzel R, Greggers U, Smith A, Berger S, Brandt R, Brunke S, Bundrock G, Hulse S, Plumpe T, Schaupp E, Schuttler E, Stach S, Stindt J, Stollhoff N, Watzl S (2005) Honey bees navigate according to a map-like spatial memory. Proc Natl Acad Sci USA 102:3040–3045CrossRefGoogle Scholar
  80. Menzel R, Gumbert A, Kunze J, Shmida A, Vorobyev MV (1997) Pollinators’ strategies in finding flowers. Israel J Plant Sci 45:141–156Google Scholar
  81. Menzel R, Kirbach A, Haass W-D, Fischer B, Fuchs J, Koblofsky M, Lehmann K, Reiter L, Meyer H, Nguyen H, Jones S, Norton P, Greggers U (2011) A common frame of reference for learned and communicated vectors in honeybee navigation. Curr Biol 21:645–650CrossRefGoogle Scholar
  82. Michener CD (2007) The bees of the world, 2nd edn. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  83. Moore D, Doherty P (2009) Acquisition of a time-memory in forager honey bees. J Comp Physiol A 195:741–751CrossRefGoogle Scholar
  84. Morse RA (1991) Honeybees forever. Trends Ecol Evol 6:337–338CrossRefGoogle Scholar
  85. Mulligan GA, Kevan PG (1973) Color brightness and other floral characteristics attracting insects to the blossoms of some Canadian weeds. Can J Bot 51:1939–1952CrossRefGoogle Scholar
  86. Ne’eman G, Kevan PG (2001) The effect of shape parameters on maximal detection distance of model targets by honey bee workers. J Comp Physiol A 187:653–660CrossRefGoogle Scholar
  87. Neumann P, Carreck NL (2010) Honey bee colony losses. J Apic Res 49:1–6CrossRefGoogle Scholar
  88. Ollerton J, Winfree R, Tarrant S (2011a) How many flowering plants are pollinated by animals? Oikos 120:321–326CrossRefGoogle Scholar
  89. Ollerton J, Price V, Scott-Armbruster W, Memmott J, Watts S, Waser NM, Totland Ø, Goulson D, Alcarón R, Stout JC, Tarrant S (2011) Overplaying the role of honey bees as pollinators: a comment on Aebi and Neumann (2011). Trends Ecol Evol. Published online 28 Dec 2011.
  90. O’Toole C, Raw A (2004) Bees of the world. Facts On File, New YorkGoogle Scholar
  91. Packer L (2010) Keeping the bees: why all bees are at risk and what we can do to save them. Harper-Collins Publishers, TorontoGoogle Scholar
  92. Proctor M, Yeo P, Lack A (1996) The natural history of pollination. Timber Press, Inc., PortlandGoogle Scholar
  93. Richards AJ (2001) Does low biodiversity resulting from modern agricultural practices affect crop pollination and yield? Ann Bot 88:165–172CrossRefGoogle Scholar
  94. Rodacy PJ, Bender SFA, Bromenshenk JJ, Henderson CB, Bender G (2002) The training and deployment of honey bees to detect explosives and other agents of harm. In: Broach JT, Harmon RS, Dobeck GJ (eds) Conference on detection and remediation technologies for mines and Minelike targets VII. Proceedings of the society of photo-optical instrumentation engineers (SPIE),vol 4742, pp 474–481Google Scholar
  95. Rossel S, Wehner R (1986) Polarization vision in bees. Nature (London) 323:128–131CrossRefGoogle Scholar
  96. Roubik DW (1992) Ecology and natural history of tropical bees (Cambridge Tropical Biology Series). Cambridge University Press, CambridgeGoogle Scholar
  97. Roulston TH, Cane JH (2000a) The effect of diet breadth and nesting ecology on body size variation in bees (Apiformes). J Kans Entomol Soc 73:129–142Google Scholar
  98. Roulston TH, Cane JH (2000b) Pollen nutritional content and digestibility for animals. Plant Syst Evol 222:187–209CrossRefGoogle Scholar
  99. Saffari A, Kevan PG, Atkinson JL (2010a) Consumption of three dry pollen substitutes in commercial apiaries. J Apic Sci 54:13–20Google Scholar
  100. Saffari A, Kevan PG, Atkinson JL (2010b) Palatability and consumption of patty-formulated pollen and pollen substitutes and their effects on honeybee colony performance. J Apic Sci 54:63–71Google Scholar
  101. Steffan-Dewenter I, Potts SG, Packer L (2005) Pollinator diversity and crop pollination services are at risk. Trends Ecol Evol 20:651–652CrossRefGoogle Scholar
  102. US National Research Council and US National Academy of Sciences (2007) Status of Pollinators in North America. Washington, DCGoogle Scholar
  103. von Frisch K (1963) Bienenuhr und Blumenuhr. Zeitschrift für Tierpsychologie 20:441–445CrossRefGoogle Scholar
  104. von Frisch K (1965) Tanzsprache und Orientierung der Bienen. Springer, BerlinCrossRefGoogle Scholar
  105. von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, CambridgeGoogle Scholar
  106. Vorobyev MV, Marshall J, Osorio D, Hempel de Ibarra N, Menzel R (2001) Colourful objects through animal eyes. Color Res Appl 26(S1):214–217Google Scholar
  107. Vorobyev MV, Kunze J, Gumbert A, Giurfa M, Menzel R (1997) Flowers through the insect eyes. Israeli J Plant Sci 45(2–3):93–102Google Scholar
  108. Vorobyev MV, Menzel R (1999) Flower advertisement for insects. In: Archer S, Partridge J (eds) Adaptive mechanisms in the ecology of vision. Kluwer, Dordrecht, pp 537–553Google Scholar
  109. Waddington KD (1983) Pollination biology. Academic Press, OrlandoGoogle Scholar
  110. Westerkamp C, Gottsberger G (2000) Diversity pays in crop pollination. Crop Sci 40:1209–1222CrossRefGoogle Scholar
  111. Willmer P (2011) Pollination and floral biology. Princeton University Press, PrincetonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Canadian Pollination Initiative (NSERC-CANPOLIN), University Professor Emeritus, School of Environmental SciencesUniversity of GuelphGuelphCanada
  2. 2.Institut für Biologie, NeurobiologieFreie Universität BerlinBerlinGermany

Personalised recommendations