Skip to main content
Log in

Clinical aspects of static magnetic field effects on circulatory system

  • Published:
The Environmentalist Aims and scope Submit manuscript

Abstract

Increased knowledge of the magnetic field influence on hemodynamic function may have significant therapeutic potential and possible health effects. For example, magnetic field therapy using moderate intensity static magnetic fields (SMF) in the mT range (in particular, 1–600 mT) could be useful for circulatory diseases, including ischemic pain, inflammation, and hypertension, primarily due to the modulation of blood flow and/or blood pressure through the nervous system. We suggested that the mechanisms of SMF effects on the circulatory system in the mT range could be mediated by suppressing or enhancing the action of biochemical effectors, thereby inducing homeostatic effects biphasically. The potent mechanisms of SMF effects have often been linked to nitric oxide pathway, Ca2+-dependent pathway, sympathetic nervous system (e.g., BRS and the action of sympathetic agonists or antagonists), and neurohumoral regulatory system (e.g., production and secretion of angiotensin II and aldosterone). Thus, this review mainly focuses on the experimental studies of SMF effects on the circulatory system in animals and may provide the physiological basis for future clinical investigations of SMF therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdelmelek H, Molnar A, Servais S, Cottet-Emard JM, Pequignot JM, Favier R, Sakly M (2006) Skeletal muscle HSP72 and norepinephrine response to static magnetic field in rat. J Neural Transm 113:821–827

    Article  CAS  Google Scholar 

  • Asano M, Yoshida K, Tatai K (1965) Microphotoelectric plethysmography using a rabbit ear chamber. J Appl Physiol 20:1056–1062

    CAS  Google Scholar 

  • Bachmann S, Bosse HM, Mundel P (1995) Topography of nitric oxide synthesis by localizing constitutive NO synthases in mammalian kidney. Am J Physiol 268:F885–F898

    CAS  Google Scholar 

  • Berdeaux A (1993) Nitric oxide: an ubiquitous messenger. Fundam Clin Pharmacol 7:401–411

    Article  CAS  Google Scholar 

  • Brix G, Strieth S, Strelczyk D, Dellian M, Griebel J, Eichhorn ME, Andrā W, Bellemann ME (2008) Static magnetic fields affect capillary flow of red blood cells in striated skin muscle. Microcirculation 15:15–26

    Article  Google Scholar 

  • Campese VM, Ye S, Zhong H, Yanamadala V, Ye Z, Chiu J (2004) Reactive oxygen species stimulate central and peripheral sympathetic nervous system activity. Am J Physiol Heart Circ Physiol 287:H695–H703

    Article  CAS  Google Scholar 

  • Chou TC, Yen MH, Li CY, Ding YA (1998) Alterations of nitric oxide synthase expression with aging and hypertension in rats. Hypertension 31:643–648

    CAS  Google Scholar 

  • Colbert AP, Markov MS, Souder JS (2008) Static magnetic field therapy: dosimetry considerations. J Altern Complement Med 14:577–582

    Article  Google Scholar 

  • Colbert AP, Wahbeh H, Harling N, Connelly E, Schiffke HC, Forsten C, Gregory WL, Markov MS, Souder JJ, Elmer P, King V (2009) Static magnetic field therapy: a critical review of treatment parameters. Evid Based Complement Alternat Med 6:133–139

    Article  Google Scholar 

  • DeLano FA, Balete R, Schmid-Schönbein GW (2005) Control of oxidative stress in microcirculation of spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 288:H805–H812

    Article  CAS  Google Scholar 

  • DeLano FA, Parks DA, Ruedi JM, Babior BM, Schmid-Schönbein GW (2006) Microvascular display of xanthine oxidase and NADPH oxidase in the spontaneously hypertensive rat. Microcirculation 13:551–566

    Article  CAS  Google Scholar 

  • Dobson J, St Pierre T, Wieser HG, Fuller M (2000a) Changes in paroxysmal brainwave patterns of epileptics by weak-field magnetic stimulation. Bioelectromagnetics 21:94–99

    Article  CAS  Google Scholar 

  • Dobson J, St Pierre TG, Schultheiss-Grassi PP, Wieser HG, Kuster N (2000b) Analysis of EEG data from weak-field magnetic stimulation of mesial temporal lobe epilepsy patients. Brain Res 868:386–391

    Article  CAS  Google Scholar 

  • Fuller M, Dobson J, Wieser HG, Moser S (1995) On the sensitivity of the human brain to magnetic fields: evocation of epileptiform activity. Brain Res Bull 36:155–159

    Article  CAS  Google Scholar 

  • Fuller M, Wilson CL, Velasco AL, Dunn JR, Zoeger J (2003) On the confirmation of an effect of magnetic fields on the interictal firing rate of epileptic patients. Brain Res Bull 60:43–52

    Article  CAS  Google Scholar 

  • Gmitrov J, Ohkubo C (2002a) Artificial static and geomagnetic field interrelated impact on cardiovascular regulation. Bioelectromagnetics 23:329–338

    Article  Google Scholar 

  • Gmitrov J, Ohkubo C (2002b) Effects of 12 mT static magnetic field on sympathetic Verapamil protective effect on natural and artificial magnetic field cardiovascular impact. Bioelectromagnetics 23:531–541

    Article  CAS  Google Scholar 

  • Gmitrov J, Ohkubo C, Okano H (2002) Effect of 0.25 T static magnetic field on microcirculation in rabbits. Bioelectromagnetics 23:224–229

    Article  Google Scholar 

  • Gorczyńska E, Wegrzynowicz R (1989) Effect of static magnetic field on some enzymes activities in rats. J Hyg Epidemiol Microbiol Immunol 33:149–155

    Google Scholar 

  • Gorman AA, Rodgers MA (1992) Current perspectives of singlet oxygen detection in biological environments. J Photochem Photobiol B 14:159–176

    Article  CAS  Google Scholar 

  • Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148

    CAS  Google Scholar 

  • Gupta A, Weeks AR, Richie SM (2008) Simulation of elevated T-waves of an ECG inside a static magnetic field (MRI). IEEE Trans Biomed Eng 55:1890–1896

    Article  Google Scholar 

  • Henry SL, Concannon MJ, Yee GJ (2008) The effect of magnetic fields on wound healing: experimental study and review of the literature. Eplasty 8:e40

    Google Scholar 

  • Hinman MR (2002) Comparative effect of positive and negative static magnetic fields on heart rate and blood pressure in healthy adults. Clin Rehabil 16:669–674

    Article  Google Scholar 

  • International Commission on Non-Ionizing Radiation Protection (ICNIRP) (2009) Guidelines on limits of exposure to static magnetic fields. Health Phys 96:504–514

    Article  Google Scholar 

  • Kim S, Chung YA, Lee CU, Chae JH, Juh R, Jeong J (2010) Target-specific rCBF changes induced by 0.3-T static magnetic field exposure on the brain. Brain Res 1317:211–217

    Article  CAS  Google Scholar 

  • Kuipers NT, Sauder CL, Ray CA (2007) Influence of static magnetic fields on pain perception and sympathetic nerve activity in humans. J Appl Physiol 102:1410–1415

    Article  Google Scholar 

  • Li H, Förstermann U (2000) Nitric oxide in the pathogenesis of vascular disease. J Pathol 190:244–254

    Article  CAS  Google Scholar 

  • Li Z, Tam EW, Mak AF, Lau RY (2007) Wavelet analysis of the effects of static magnetic field on skin blood flowmotion: investigation using an in vivo rat model. In Vivo 21:61–68

    Google Scholar 

  • Lovsund P, Oberg PA, Nilsson SE (1979) Influence on vision of extremely low frequence electromagnetic fields. Industrial measurements, magnetophosphene studies volunteers and intraretinal studies in animals. Acta Ophthalmol (Copenh) 57:812–821

    Article  CAS  Google Scholar 

  • Ma XL, Gao F, Nelson AH, Lopez BL, Christopher TA, Yue TL, Barone FC (2001) Oxidative inactivation of nitric oxide and endothelial dysfunction in stroke-prone spontaneous hypertensive rats. J Pharmacol Exp Ther 298:879–885

    CAS  Google Scholar 

  • Markov MS (2007a) Magnetic field therapy: a review. Electromagn Biol Med 26:1–23

    Article  Google Scholar 

  • Markov MS (2007b) Therapeutic application of static magnetic fields. Environmentalist 27:457–463

    Article  Google Scholar 

  • Markov MS (2009) What need to be known about the therapy with static magnetic fields. Environmentalist 29:169–176

    Article  Google Scholar 

  • Markov MS (2010) Angiogenesis, magnetic fields and ‘window effects’. Cardiology 117:54–56

    Article  Google Scholar 

  • Martel GF, Andrews SC, Roseboom CG (2002) Comparison of static and placebo magnets on resting forearm blood flow in young, healthy men. J Orthop Sports Phys Ther 32:518–524

    Google Scholar 

  • Martino CF, Perea H, Hopfner U, Ferguson VL, Wintermantel E (2010) Effects of weak static magnetic fields on endothelial cells. Bioelectromagnetics 31:296–301

    Article  CAS  Google Scholar 

  • Mayrovitz HN, Groseclose EE (2005) Effects of a static magnetic field of either polarity on skin microcirculation. Microvasc Res 69:24–27

    Article  Google Scholar 

  • Mayrovitz HN, Groseclose EE, Markov M, Pilla AA (2001) Effects of permanent magnets on resting skin blood perfusion in healthy persons assessed by laser Doppler flowmetry and imaging. Bioelectromagnetics 22:494–502

    Article  CAS  Google Scholar 

  • Mayrovitz HN, Groseclose EE, King D (2005) No effect of 85 mT permanent magnets on laser-Doppler measured blood flow response to inspiratory gasps. Bioelectromagnetics 26:331–335

    Article  Google Scholar 

  • McKay JC, Prato FS, Thomas AW (2007) A literature review: the effects of magnetic field exposure on blood flow and blood vessels in the microvasculature. Bioelectromagnetics 28:81–98

    Article  CAS  Google Scholar 

  • McNamee DA, Legros AG, Krewski DR, Wisenberg G, Prato FS, Thomas AW (2009) A literature review: the cardiovascular effects of exposure to extremely low frequency electromagnetic fields. Int Arch Occup Environ Health 82:919–933

    Article  Google Scholar 

  • Morris CE, Skalak TC (2005) Static magnetic fields alter arteriolar tone in vivo. Bioelectromagnetics 26:1–9

    Article  Google Scholar 

  • Morris CE, Skalak TC (2007) Chronic static magnetic field exposure alters microvessel enlargement resulting from surgical intervention. J Appl Physiol 103:629–636

    Article  Google Scholar 

  • Morris CE, Skalak TC (2008) Acute exposure to a moderate strength static magnetic field reduces edema formation in rats. Am J Physiol Heart Circ Physiol 294:H50–H57

    Article  CAS  Google Scholar 

  • Ohkubo C, Xu S (1997) Acute effects of static magnetic fields on cutaneous microcirculation in rabbits. In Vivo 11:221–225

    CAS  Google Scholar 

  • Ohkubo C, Okano H, Ushiyama A, Masuda H (2007) EMF effects on microcirculatory system. Environmentalist 27:395–402

    Article  Google Scholar 

  • Okano H, Ohkubo C (2001) Modulatory effects of static magnetic fields on blood pressure in rabbits. Bioelectromagnetics 22:408–418

    Article  CAS  Google Scholar 

  • Okano H, Ohkubo C (2003a) Anti-pressor effects of whole body exposure to static magnetic field on pharmacologically induced hypertension in conscious rabbits. Bioelectromagnetics 24:139–147

    Article  Google Scholar 

  • Okano H, Ohkubo C (2003b) Effects of static magnetic fields on plasma levels of angiotensin II and aldosterone associated with arterial blood pressure in genetically hypertensive rats. Bioelectromagnetics 24:403–412

    Article  CAS  Google Scholar 

  • Okano H, Ohkubo C (2005a) Effects of neck exposure to 5.5 mT static magnetic field on pharmacologically modulated blood pressure in conscious rabbits. Bioelectromagnetics 26:469–480

    Article  Google Scholar 

  • Okano H, Ohkubo C (2005b) Exposure to a moderate intensity static magnetic field enhances the hypotensive effect of a calcium channel blocker in spontaneously hypertensive rats. Bioelectromagnetics 26:611–623

    Article  CAS  Google Scholar 

  • Okano H, Ohkubo C (2007) Effects of 12 mT static magnetic field on sympathetic agonist-induced hypertension in Wistar rats. Bioelectromagnetics 28:369–378

    Article  Google Scholar 

  • Okano H, Gmitrov J, Ohkubo C (1999) Biphasic effects of static magnetic fields on cutaneous microcirculation in rabbits. Bioelectromagnetics 20:161–171

    Article  CAS  Google Scholar 

  • Okano H, Masuda H, Ohkubo C (2005a) Effects of 25 mT static magnetic field on blood pressure in reserpine-induced hypotensive Wistar-Kyoto rats. Bioelectromagnetics 26:36–48

    Article  Google Scholar 

  • Okano H, Masuda H, Ohkubo C (2005b) Decreased plasma levels of nitric oxide metabolites, angiotensin II, and aldosterone in spontaneously hypertensive rats exposed to 5 mT static magnetic field. Bioelectromagnetics 26:161–172

    Article  CAS  Google Scholar 

  • Prato FS, Frappier JR, Shivers RR, Kavaliers M, Zabel P, Drost D, Lee TY (1990) Magnetic resonance imaging increases the blood-brain barrier permeability to 153-gadolinium diethylenetriaminepentaacetic acid in rats. Brain Res 523:301–304

    Article  CAS  Google Scholar 

  • Rajagopalan S, Kurz S, Münzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 97:1916–1923

    Article  CAS  Google Scholar 

  • Ratterman R, Secrest J, Norwood B, Ch’ien AP (2002) Magnet therapy: what’s the attraction? J Am Acad Nurse Pract 14:347–353

    Article  Google Scholar 

  • Ravera S, Bianco B, Cugnoli C, Panfoli I, Calzia D, Morelli A, Pepe IM (2010) Sinusoidal ELF magnetic fields affect acetylcholinesterase activity in cerebellum synaptosomal membranes. Bioelectromagnetics 31:270–276

    Article  CAS  Google Scholar 

  • Ritz T, Adem S, Schulten K (2000) A model for photoreceptor-based magnetoreception in birds. Biophys J 78(2):707–718

    Article  CAS  Google Scholar 

  • Ritz T, Dommer DH, Phillips JB (2002) Shedding light on vertebrate magnetoreception. Neuron 34:503–506

    Article  CAS  Google Scholar 

  • Ritz T, Ahmad M, Mouritsen H, Wiltschko R, Wiltschko W (2010) Photoreceptor-based magnetoreception: optimal design of receptor molecules, cells, and neuronal processing. J R Soc Interface 7:S135–S146

    Article  CAS  Google Scholar 

  • Rosen AD (1992) Magnetic field influence on acetylcholine release at the neuromuscular junction. Am J Physiol 262:C1418–1422

    CAS  Google Scholar 

  • Rosen AD (1996) Inhibition of calcium channel activation in GH3 cells by static magnetic fields. Biochim Biophys Acta 1282:149–155

    Article  Google Scholar 

  • Rosen AD (2003) Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem Biophys 39:163–173

    Article  CAS  Google Scholar 

  • Saunders R (2005) Static magnetic fields: animal studies. Prog Biophys Mol Biol 87:225–239

    Article  Google Scholar 

  • Sirmatel O, Sert C, Tümer C, Oztürk A, Bilgin M, Ziylan Z (2007) Change of nitric oxide concentration in men exposed to a 1.5 T constant magnetic field. Bioelectromagnetics 28:152–154

    Article  CAS  Google Scholar 

  • Steyn PF, Ramey DW, Kirschvink J, Uhrig J (2000) Effect of a static magnetic field on blood flow to the metacarpus in horses. J Am Vet Med Assoc 217:874–877

    Article  CAS  Google Scholar 

  • Strelczyk D, Eichhorn ME, Luedemann S, Brix G, Dellian M, Berghaus A, Strieth S (2009) Static magnetic fields impair angiogenesis and growth of solid tumors in vivo. Cancer Biol Ther 8:1756–1762

    Article  Google Scholar 

  • Strieth S, Strelczyk D, Eichhorn ME, Dellian M, Luedemann S, Griebel J, Bellemann M, Berghaus A, Brix G (2008) Static magnetic fields induce blood flow decrease and platelet adherence in tumor microvessels. Cancer Biol Ther 7:814–819

    Article  Google Scholar 

  • Suzuki H, Swei A, Zweifach BW, Schmid-Schönbein GW (1995) In vivo evidence for microvascular oxidative stress in spontaneously hypertensive rats. Hydroethidine microfluorography. Hypertension 25:1083–1089

    CAS  Google Scholar 

  • Takeshige C, Sato M (1996) Comparisons of pain relief mechanisms between needling to the muscle, static magnetic field, external qigong and needling to the acupuncture point. Acupunct Electrother Res 21:119–131

    CAS  Google Scholar 

  • Welch WJ, Tojo A, Lee JU, Kang DG, Schnackenberg CG, Wilcox CS (1999) Nitric oxide synthase in the JGA of the SHR: expression and role in tubuloglomerular feedback. Am J Physiol 277:F130–F138

    CAS  Google Scholar 

  • Winklhofer M (2010) Magnetoreception. J R Soc Interface 7:S131–S134

    Article  Google Scholar 

  • Xu S, Okano H, Ohkubo C (1998) Subchronic effects of static magnetic fields on cutaneous microcirculation in rabbits. In Vivo 12:383–389

    CAS  Google Scholar 

  • Xu S, Okano H, Ohkubo C (2000) Acute effects of whole-body exposure to static magnetic fields and 50-Hz electromagnetic fields on muscle microcirculation in anesthetized mice. Bioelectrochemistry 53:127–135

    Article  Google Scholar 

  • Ye SR, Yang JW, Chen CM (2004) Effect of static magnetic fields on the amplitude of action potential in the lateral giant neuron of crayfish. Int J Radiat Biol 80:699–708

    Article  CAS  Google Scholar 

  • Zhadin MN (2001) Review of russian literature on biological action of DC and low-frequency AC magnetic fields. Bioelectromagnetics 22:27–45

    Article  CAS  Google Scholar 

  • Zhao W, Swanson SA, Ye J, Li X, Shelton JM, Zhang W, Thomas GD (2006) Reactive oxygen species impair sympathetic vasoregulation in skeletal muscle in angiotensin II-dependent hypertension. Hypertension 48:637–643

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiyoji Ohkubo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohkubo, C., Okano, H. Clinical aspects of static magnetic field effects on circulatory system. Environmentalist 31, 97–106 (2011). https://doi.org/10.1007/s10669-010-9301-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10669-010-9301-x

Keywords

Navigation