Advertisement

The Environmentalist

, Volume 30, Issue 1, pp 90–97 | Cite as

The incidence of electromagnetic pollution on wild mammals: A new “poison” with a slow effect on nature?

Article

Abstract

A review on the effects of radiofrequency radiation from wireless telecommunications on living organisms and its possible impact on wild mammals are presented. Physical and technological characteristics of mobile telephone and phone masts, the scientific discoveries that are of interest in the study of their effects on the wildlife, action mechanisms on biological systems and experimental difficulties are described. Keeping in mind that electromagnetic pollution (in the microwave and radiofrequency range) is a possible source for decline of some mammal populations, it is of great importance to carry out studies on the effects of this new pollutant to wildlife. Some research types that could be useful to determine adverse health effects are proposed.

Keywords

Effects on wild mammals Electromagnetic fields Microwaves Mobile telecommunications Non-thermal effects Phone masts Radiofrequencies 

Notes

Acknowledgments

The author is grateful to Denise Ward who revised the English version of this article and thanks to ‘‘Centro de Información y Documentación Ambiental’’ in Castilla y León (Spain) for providing some papers.

References

  1. Adey WR (1981) Tissue interactions with non-ionizing electromagnetic fields. Physiol Rev 61:435–514Google Scholar
  2. Adey WR (1996) Bioeffects of mobile communications fields: possible mechanisms for cumulative dose. In: Kuster En, Balzano Lin (eds) Mobile communication safety. Chapman and Hall, London, pp 95–131Google Scholar
  3. Balmori A (2004). ¿Pueden afectar las microondas pulsadas emitidas por las antenas de telefonía a los árboles y otros vegetales? Ecosistemas: (http://www.revistaecosistemas.net/articulo.asp?Id=29&Id_Categoria=1&tipo=otros_contenidos)
  4. Balmori A (2005) Possible effects of electromagnetic fields from phone masts on a population of white stork (Ciconia ciconia). Electromagn Biol Med 24:109–119. doi: 10.1080/15368370500205472 CrossRefGoogle Scholar
  5. Balmori A (2006a) The incidence of electromagnetic pollution on the amphibian decline: Is this an important piece of the puzzle? Toxicol Environ Chem 88:287–299. doi: 10.1080/02772240600687200 CrossRefGoogle Scholar
  6. Balmori A (2006b) Efectos de las radiaciones electromagnéticas de la telefonía móvil sobre los insectos. Ecosistemas: (http://www.revistaecosistemas.net/articulo.asp?Id=396&Id_Categoria=2&tipo=portada)
  7. Balmori A, Hallberg Ö (2007) The urban decline of the house sparrow (Passer domesticus): a possible link with electromagnetic radiation. EBM 26(2) (in press)Google Scholar
  8. Balode S (1996) Assessment of radio-frequency electromagnetic radiation by the micronucleus test in bovine peripheral erythrocytes. Sci Total Environ 180:81–85. doi: 10.1016/0048-9697(95)04923-1 CrossRefGoogle Scholar
  9. Balodis VG, Brumelis K, Kalviskis O, Nikodemus D, Tjarve VZ (1996) Does the Skrunda radio location station diminish the radial growth of pine trees? Sci Total Environ 180:57–64. doi: 10.1016/0048-9697(95)04920-7 CrossRefGoogle Scholar
  10. Barteri M, Pala A, Rotella S (2005) Structural and kinetic effects of mobile phone microwaves on acetyl cholinesterase activity. Biophys Chem 113:245–253. doi: 10.1016/j.bpc.2004.09.010 CrossRefGoogle Scholar
  11. Beasond RC, Semm P (2002) Responses of neurons to an amplitude modulated microwave stimulus. Neurosci Lett 33:175–178. doi: 10.1016/S0304-3940(02)00903-5 CrossRefGoogle Scholar
  12. Belyaev I (2005). Non-thermal biological effects of microwaves. Microw Rev 11: 13–29. Available on: http://www.mwr.medianis.net/pdf/Vol11No2-03-IBelyaev.pdf Google Scholar
  13. Belyaev I, Hillert L, Markova E, Sarimov R, Malmgren L, Persson B, Harms-Ringdahl M (2004). Microwaves of mobile phones affect human lymphocytes from normal and hypersensitive subjects dependent on frequency, presented at 26th Annual Meeting of the Bioelectromagnetics (BEMS)Google Scholar
  14. Berman E, Chacon L, House D, Koch BA, Koch WE, Leal J, Lovtrup S, Mantiply E, Martin AH, Martucci GI, Mild KH, Monahan JC, Sandstrom M, Shamsaifar K, Tell R, Trillo MA, Ubeda A, Wagner P (1990) Development of chicken embryos in a pulsed magnetic field. Bioelectromagnetics 11:169–187. doi: 10.1002/bem.2250110208 CrossRefGoogle Scholar
  15. Carpenter RL, Livstone EM (1971) Evidence for nonthermal effects of microwave radiation: abnormal development of irradiated insect pupae. IEEE Trans Microw Theory Tech 19:173–178. doi: 10.1109/TMTT.1968.1127480 CrossRefGoogle Scholar
  16. Chou CK, Guy AW, Kunz LL, Johnson RB, Crowley JJ, Krupp JH (1992) Long-term, low-level microwave irradiation of rats. Bioelectromagnetics 13:469–496. doi: 10.1002/bem.2250130605 CrossRefGoogle Scholar
  17. Daniells C, Duce I, Thomas D, Sewell P, Tattersall J, de Pomerai D (1998) Transgenic nematodes as biomonitors of microwave-induced stress. Mutat Res 399:55–64. doi: 10.1016/S0027-5107(97)00266-2 Google Scholar
  18. Dasdag S, Ketani MA, Akdag Z, Ersay AR, Sar I, Demirtas ÖC, Celik MS (1999) Whole body microwave exposure emitted by cellular phones and testicular function of rats. Urol Res 27:219–223. doi: 10.1007/s002400050113 CrossRefGoogle Scholar
  19. Davoudi M, Brössner C, Kuber W (2002) Der Einfluss elektromagnetischer wellen auf die Spermienmotilität. J für Urol Urogynakol 9:18–22Google Scholar
  20. De Pomerai D, Daniells C, David H, Allan J, Duce I, Mutwakil M, Thomas D, Sewell P, Tattersall J, Jones D, Candido P (2000) Non-thermal heat-shock response to microwaves. Nature 405:417–418. doi: 10.1038/35013144 CrossRefGoogle Scholar
  21. Delgado JMR (1985) Biological effects of extremely low frequency electromagnetic fields. J Bioelectr 4:75–91Google Scholar
  22. Demsia G, Vlastos D, Matthopoulos DP (2004) Effect of 910-MHz electromagnetic field on rat bone marrow. Sci World J 4:48–54Google Scholar
  23. Di Carlo A, Wite N, Guo F, Garrett P, Litovitz T (2002) Chronic electromagnetic field exposure decreases HSP70 levels and lowers cytoprotection. J Cell Biochem 84:447–454. doi: 10.1002/jcb.10036 CrossRefGoogle Scholar
  24. Diem E, Schwarz C, Adlkofer F, Jahn O, Rudiger H (2005) Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mutat Res 583:178–183Google Scholar
  25. Doherty PF, Grubb TC (1996) Effects of high-voltage power lines on birds breeding within the power lines electromagnetic fields. Sialia 18:129–134Google Scholar
  26. Dutta SK, Ghosh B, Blackman CF (1989) Radiofrequency radiation-induced calcium ion efflux enhancement from human and other neuroblastoma cells in culture. Bioelectromagnetics 10:197–202. doi: 10.1002/bem.2250100208 CrossRefGoogle Scholar
  27. EPA (United States environmental agency protection) (2002). Letter from Norbert Hankin (Radiation Protection Division) to Janet Newton. Available on: http://www.avaate.org/article.php3?id_article=243
  28. Everaert J, Bauwens D (2007) A possible effect of electromagnetic radiation from mobile phone base stations on the number of breeding House Sparrows (Passer domesticus). Electromagn Biol Med 26 (in press). doi: 10.1080/15368370701205693
  29. Farrel JM, Litovitz TL, Penafiel M (1997) The effect of pulsed and sinusoidal magnetic fields on the morphology of developing chick embryos. Bioelectromagnetics 18:431–438. doi: 10.1002/(SICI)1521-186X(1997)18:6<431:AID-BEM5>3.0.CO;2-3 CrossRefGoogle Scholar
  30. Fedrowitz M, Kamino K, Löscher W (2004) Significant differences in the effects of magnetic field exposure on 7, 12 dimethylbenz(a)anthracene-induced mammary carcinogenesis in two sub-strains of Sprague-Dawley rats. Cancer Res 64:243–251. doi: 10.1158/0008-5472.CAN-03-2808 CrossRefGoogle Scholar
  31. Fejes I, Za Vaczki Z, Szollosi J, Kolosza RS, Daru J, Kova Cs L, Pa LA (2005) Is there a relationship between cell phone use and semen quality? Arch Androl 51:385–393. doi: 10.1080/014850190924520 CrossRefGoogle Scholar
  32. Fernie KJ, Bird DM (1999) Effects of electromagnetic fields on body mass and food-intake of American kestrels. Condor 101:616–621. doi: 10.2307/1370191 CrossRefGoogle Scholar
  33. Fernie KJ, Bird DM (2001) Evidence of oxidative stress in American kestrels exposed to electromagnetic fields. Environ Res A 86:198–207. doi: 10.1006/enrs.2001.4263 CrossRefGoogle Scholar
  34. Fernie KJ, Reynolds SJ (2005). The effects of electromagnetic fields from power lines on avian reproductive biology and physiology: A review. J Toxicol Environ Health, Part B 8: 127–140. (http://www.ierp.bham.ac.uk/publications/Fernie%20and%20Reynolds%202005.pdf)
  35. Fernie KJ, Bird DM, Dawson RD, Lague PC (2000a) Effects of electromagnetic fields on the reproductive success of American kestrels. Physiol Biochem Zool 73:60–65. doi: 10.1086/316726 CrossRefGoogle Scholar
  36. Fernie KJ, Leonard NJ, Bird DM (2000b) Behavior of free-ranging and captive American kestrels under electromagnetic fields. J Toxicol Environ Health Part A 59:597–603CrossRefGoogle Scholar
  37. Firstenberg A (1997). Microwaving our planet: the environmental impact of the wireless revolution. Cellular Phone Taskforce. Brooklyn, NY 11210Google Scholar
  38. Flipo D, Fournier M, Benquet C, Roux P, Le Boulaire C (1998) Increased apoptosis, changes in intracellular Ca2+, and functional alterations in lymphocytes and macrophages after in vitro exposure to static magnetic field. J Toxicol Environ Health A 54:63–76. doi: 10.1080/009841098159033 CrossRefGoogle Scholar
  39. Frey AH, Feld SR (1975) Avoidance by rats of illumination with low power nonionizing electromagnetic energy. J Comp Physiol Psychol 89:183–188. doi: 10.1037/h0076662 CrossRefGoogle Scholar
  40. Galeev AL (2000) The effects of microwave radiation from mobile telephones on humans and animals. Neurosci Behav Physiol 30:187–194. doi: 10.1007/BF02463157 CrossRefGoogle Scholar
  41. Gandhi AG, Singh P (2005) Cytogenetic damage in mobile phone users: preliminary data. Int J Hum Genet 5:259–265Google Scholar
  42. Garaj-Vrhovac V, Horvat D, Koren Z (1991) The relationship between colony-forming ability, chromosome aberrations and incidence of micronuclei in V79 Chinese hamster cells exposed to microwave radiation. Mutat Res 263:143–149. doi: 10.1016/0165-7992(91)90054-8 CrossRefGoogle Scholar
  43. Goodman R, Blank M (2002) Insights into electromagnetic interaction mechanisms. J Cell Physiol 192:16–22CrossRefGoogle Scholar
  44. Grefner NM, Yakovleva TL, Boreysha IK (1998) Effects of electromagnetic radiation on tadpole development in the common frog (Rana temporaria L.). Russ J Ecol 29:133–134Google Scholar
  45. Grigoriev IuG (1996) Role of modulation in biological effects of electromagnetic radiation. Radiats Biol Radioecol 36:659–670Google Scholar
  46. Grigoriev IuG (2003) Influence of the electromagnetic field of the mobile phones on chickens embryo, to the evaluation of the dangerousness after the criterion of this mortality. J Radiat Biol 5:541–544Google Scholar
  47. Grigoriev IUG, Luk’ianova SN, Makarov VP, Rynskov VV, Moiseeva NV (1995) Motor activity off rabbits in conditions of chronic low-intensity pulse microwave irradiation. Radiatsionnaia Biologiiia Radioecologiia 35:29–35Google Scholar
  48. Hallberg Ö, Johansson O (2004) Mobile handset output power and health. Electromagn Biol Med 23:229–239CrossRefGoogle Scholar
  49. Hardell L, Carlberg M, Hansson Mild K (2006) Pooled analysis of two case-control studies on the use of cellular and cordless telephones and the risk of benign brain tumours diagnosed during 1997–2003. Int J Oncol, 28: 509–518, 2006 509Google Scholar
  50. Haumann T, Munzenberg U, Maes W, y Sierck P (2002) HF.Radiation levels of GSM cellular phone towers in residential areas. 2nd International Workshop on Biological effects of EMFS. Rhodes, GreeceGoogle Scholar
  51. Heredia-Rojas L, Rodríguez-Flores M, Santoyo-Stephano E, Castañeda-Garza A, Rodríguez-De la Fuente (2003) Los campos electromagnéticos: ¿Un problema de salud pública? Respyn 4:1–10Google Scholar
  52. Hondou T (2002) Rising level of public exposure to mobile phones: accumulation through additivity and reflectivity. J Physical Soc Japan 71:432–435CrossRefGoogle Scholar
  53. Hotary KB, Robinson KR (1992) Evidence of a role for endogenous electrical fields in chick embryo development. Development 114:985–996Google Scholar
  54. Hutter HP, Moshammer H, Wallner P, Kundi M (2006) Subjective symptoms, sleeping problems, and cognitive performance in subjects living near mobile phone base stations. Occup Environ Med 63:307–313CrossRefGoogle Scholar
  55. Hyland GJ (2000) Physics and biology of mobile telephony. Lancet 356:1–8CrossRefGoogle Scholar
  56. Hyland GJ (2001) The physiological and environmental effects of non-ionising electromagnetic radiation. Working document for the STOA Panel. European Parliament. Directorate General for ResearchGoogle Scholar
  57. Kemerov S, Marinkev M, Getova D (1999) Effects of low-intensity electromagnetic fields on behavioral activity of rats. Folia Med 41:75–80Google Scholar
  58. Kolodynski AA, Kolodynska VV (1996) Motor and psychological functions of school children living in the area of the Skrunda Radio Location Station in Latvia. Sci Total Environ 180:87–93CrossRefGoogle Scholar
  59. Kramarenko AV, Tan U (2003) Effects of high-frequency electromagnetic fields on human EEG: a brain mapping study. Int J Neurosci 113:1007–1019CrossRefGoogle Scholar
  60. Krstić DD, Đinđić BJ, Sokolović DT, Marković VV, Petković DM, Radić SB (2005) The results of experimental exposition of mice by mobile telephones. Microwave review. In: TELSIKS Conference, Serbia and Montenegro, pp 34–37Google Scholar
  61. Lai H (2005) Biological effects of radiofrequency electromagnetic field. Encyclopaedia of Biomaterials and Biomedical Engineering 1–8. doi: 10.1081/E-EBBE-120041846
  62. Lai H, Singh NP (1995) Acute low-intensity microwave exposure increases DNA single-strand breaks in rat brain cells. Bioelectromagnetics 16:207–210CrossRefGoogle Scholar
  63. Lai H, Carino MA, Horita A, Guy AW (1989) Acute low-level microwave exposure and central cholinergic activity: a dose-response study. Bioelectromagnetics 10:203–209CrossRefGoogle Scholar
  64. Lee GM, Neutra RR, Hristova L, Yost M, Hiatt RA (2002) A nested case-control study of residential and personal magnetic field measures and miscarriages. Epidemiology 13:21–31CrossRefGoogle Scholar
  65. Leszczynski D, Joenväärä S, Reivinen J, Kuokka R (2002) Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: Molecular mechanism for cancer- and blood-brain barrier-related effects. Differentiation 70:120–129CrossRefGoogle Scholar
  66. Löscher W, Käs G (1998) Conspicuous behavioural abnormalities in a dairy cow herd near a TV and radio transmitting antenna. Practical Vet Surgeon 29:437–444Google Scholar
  67. Magras IN, Xenos TD (1997) Radiation-induced changes in the prenatal development of mice. Bioelectromagnetics 18:455–461CrossRefGoogle Scholar
  68. Mann K, Roschkle J (1996) Effects of pulsed high-frequency electromagnetic fields on human sleep. Neuropsychobiology 33:41–47CrossRefGoogle Scholar
  69. Marino AA, Nilsen E, Frilot C (2003) Nonlinear changes in brain electrical activity due to cell phone radiation. Bioelectromagnetics 24:339–346CrossRefGoogle Scholar
  70. Marks TA, Ratke CC, English WO (1995) Strain voltage and developmental, reproductive and other toxicology problems in dogs, cats and cows: a discussion. Vet Human Toxicol 37:163–172Google Scholar
  71. McGivern RF, Sokol RZ, Adey WR (1990) Prenatal exposure to a low-frequency electromagnetic field demasculinizes adult scent marking behavior and increases accessory sex organ weights in rats. Teratology 41:1–8CrossRefGoogle Scholar
  72. Mevissen M, Haübler M (1998) Acceleration of mammary tumorigenesis by exposure of 7, 12-dimethylbenz(a)anthracene-treated female rats in a 50-Hz, 100-μT magnetic field: replication study. J Toxicol Environ Health Part A 53:401–418CrossRefGoogle Scholar
  73. Moorhouse TP, Macdonald DavidW (2005) Indirect negative impacts of radio-collaring: sex ratio variation in water voles. J Appl Ecol 42:91CrossRefGoogle Scholar
  74. Navakatikian MA, Tomashevskaya LA (1994) Phasic behavioral and endocrine effects of microwaves of nonthermal intensity. In: Carpenter DO (ed) Biological effects of electric and magnetic fields. vol. 1. Academic Press, San DiegoGoogle Scholar
  75. Navarro EA, Segura J, Portolés M, Gómez Perretta C (2003) The microwave syndrome: a preliminary study in Spain. Electromagn Biol Med 22:161–169CrossRefGoogle Scholar
  76. Nicholls B, Racey PA (2007) Bats avoid radar installations: could electromagnetic fields deter bats from colliding with wind turbines? Plos One 3:e297CrossRefGoogle Scholar
  77. Nikolaevich N, Igorevna A, Vasil G (2001) Influence of high-frequency electromagnetic radiation at non-thermal intensities on the human body (A review of work by Russian and Ukrainian researchers). No place to hide, 3. SupplementGoogle Scholar
  78. Novoselova ET, Fesenko EE (1998) Stimulation of production of tumour necrosis factor by murine macrophages when exposed in vivo and in vitro to weak electromagnetic waves in the centimeter range. Biofizika 43:1132–1133Google Scholar
  79. Panagopoulos DJ, Karabarbounis A, Margaritis LH (2004) Effect of GSM 900 MHz mobile phone radiation on the reproductive capacity of Drosophila melanogaster. Electromagn Biol Med 23:29–43CrossRefGoogle Scholar
  80. Paulraj R, Behari J, Rao AR (1999) Effect of amplitude modulated RF radiation on calcium ion efflux and ODC activity in chronically exposed rat brain. Indian J Biochem Biophys 36:337–340Google Scholar
  81. Salford LG, Brun AE, Eberhardt JL, Malmgren L, Persson BR (2003) Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ Health Perspect 111:881–893Google Scholar
  82. Santini R, Seigne M, Bonhomme-Faibre L (2000) Danger des téléphones cellulaires et de leurs stations relais. Pathol Biol 48:525–528Google Scholar
  83. Selga T, Selga M (1996) Response of Pinus Sylvestris L. needles to electromagnetic fields. Cytological and ultraestructural aspects. Sci Total Environ 180:65–73CrossRefGoogle Scholar
  84. Sobel E, Dunn M, Davanipour Z, Quian Z, Chui Hc (1996) Elevated risk of Alzheimer’s disease among workers with likely electromagnetic field exposure. Neurology 47(6):1477–1481Google Scholar
  85. Stever H, Kuhn J, Otten C, Wunder B, Harst W (2005) Verhaltensanderung unter elektromagnetischer Exposition. Pilotstudie. Institut für mathematik. Arbeitsgruppe. Bildungsinformatik. Universität Koblenz-Landau. http://agbi.uni-landau.de/
  86. Tofani S, Agnesod G, Ossola P, Ferrini S, Bussi R (1986) Effects of continuous low-level exposure to radio-frequency radiation on intrauterine development in rats. Health Phys 51:489–499CrossRefGoogle Scholar
  87. Úbeda A, Leal J, Trillo MA, Jimenez MA, Delgado JMR (1983) Pulse shape of magnetic fields influences chick embryogenesis. J Anat 137:513–536Google Scholar
  88. Úbeda A, Trillo MA, Chacón L, Blanco MJ, Leal J (1994) Chick embryo development can be irreversibly altered by early exposure to weak extremely-low-frequency magnetic fields. Bioelectromagnetics 15:385–398CrossRefGoogle Scholar
  89. Weisbrot D, Lin H, Ye L, Blank M, Goodman R (2003) Effects of mobile phone radiation on reproduction and development in Drosophila melanogaster. J Cell Biochem 89:48–55CrossRefGoogle Scholar
  90. Youbicier-Simo BJ, Bastide M (1999) Pathological effects induced by embryonic and postnatal exposure to EMFs radiation by cellular mobile phones. Radiat Protect 1:218–223Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Direccion General del Medio Natural. Consejería de Medio Ambiente. Junta de Castilla y LeonValladolidSpain

Personalised recommendations