Skip to main content

Advertisement

Log in

Simplified DO sag models for rapid BOD removal

  • Published:
The Environmentalist Aims and scope Submit manuscript

Abstract

Predictive models for dissolved oxygen deficit have been developed based on an exponential form of expression for the equivalent linear removal of the settleable component of biochemical oxygen demand. These models are more convenient to use than other models because they are applicable for any distance from the outfall and for point and non-point wastewater discharge conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bhargava DS (September 9–11, 1982) Coagulating capacity of Ganga at Kanpur. In: International symposium on food industry and the environment, held at Budapest, Hungary, pp 133–141 (also In: Hollo J (ed) Developments in food science, vol 9: food industries and the environment. Elsevier Science Publishers, Amsterdam, The Netherlands, 1984)

  • Bhargava DS (1983) Most rapid BOD assimilation in Ganga and Yamuna rivers. J Environ Eng, Am Soc Civ Eng, USA 109(1):174–188 (Paper No. 17674)

    CAS  Google Scholar 

  • Bhargava DS (1986a) DO sag models for extremely fast river purification. J Environ Eng, Am Soc Civ Eng, USA 112(3):572–585 (Paper No. 20696)

    CAS  Google Scholar 

  • Bhargava DS (1986b) Modelling for compounded DO sags. Civ Eng Trans, Inst Eng, Australia CE 28(3):222–230

    Google Scholar 

  • Bhargava DS (1986c) Models for polluted streams subject to fast purification. Water Res (England) 20(1):1–8

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Swaroop Bhargava.

Appendix—list of equations

Appendix—list of equations

$$ S = S_{{{\text{o-}}x}} \left[ {1 - (t/T)} \right] + S_{{{\text{o-}}y}} \exp ( - kt) $$
(1)
$$ S = S_{{{\text{o-}}x}} \exp ( - k_{1} t) + S_{{{\text{o-}}y}} \exp ( - k_{2} t) $$
(2)
$$ {\text{d}}D/{\text{d}}t = k^{\prime}S - k_{\text{r}} D = - {\text{dO}}_{2} /{\text{d}}t $$
(3)
$$ {\text{d}}D/{\text{d}}t = mS_{{{\text{o-}}x}} \exp ( - k_{1} t) + k_{2} S_{{{\text{o-}}y}} \exp ( - k_{2} t) - k_{\text{r}} D $$
(4)
$$ \begin{aligned} D = & [m/(k_{\text{r}} - k_{1} )]S_{{{\text{o-}}x}} [\exp ( - k_{1} t) - \exp ( - k_{\text{r}} t)] \\ & + [k_{2} /(k_{\text{r}} - k_{2} )]S_{{{\text{o-}}y}} [\exp ( - k_{2} t) - \exp ( - k_{\text{r}} t)] + D_{\text{o}} \exp ( - k_{\text{r}} t) \\ \end{aligned} $$
(5)
$$ \begin{aligned} D_{\text{o}} = & [m/(k_{\text{r}} - k_{1} )]S_{{{\text{o-}}x}} [1 - (k_{1} /k_{\text{r}} )\exp \{ (k_{\text{r}} - k_{1} )t_{\text{c}} \} ] \\ & + [k_{2} /(k_{\text{r}} - k_{2} )]S_{{{\text{o-}}y}} [1 - (k_{2} /k_{\text{r}} )\exp \{ (k_{\text{r}} - k_{2} )t_{\text{c}} \} ] \\ \end{aligned} $$
(6)
$$ D_{\text{c}} = (m/k_{\text{r}} )S_{{{\text{o-}}x}} \exp ( - k_{1} t_{\text{c}} ) + (k_{2} /k_{\text{r}} )S_{{{\text{o-}}y}} \exp ( - k_{2} t_{\text{c}} ) $$
(7)
$$ \begin{aligned} D_{\text{o}} = & [m/(k_{\text{r}} - k_{1} )]S_{{{\text{o-}}x}} \left[ {1 - \left( {k_{1}^{2} /k_{\text{r}}^{2} } \right)\exp \{ (k_{\text{r}} - k_{1} )t_{i} \} } \right] \\ & + [k_{2} /(k_{\text{r}} - k_{2} )]S_{{{\text{o-}}y}} \left[ {1 - \left( {k_{2}^{2} /k_{\text{r}}^{2} } \right)\exp \{ (k_{\text{r}} - k_{2} )t_{i} \} } \right] \\ \end{aligned} $$
(8)
$$ D_{i} = \left[ {(k_{1} + k_{\text{r}} )/k_{\text{r}}^{2} } \right]mS_{\text{o}} \exp ( - k_{1} t_{i} ) + \left[ {(k_{2} + k_{\text{r}} )/k_{\text{r}}^{2} } \right]k_{2} S_{{{\text{o-}}y}} \exp ( - k_{2} t_{i} ) $$
(9)
$$ \begin{aligned} S = & B_{\text{o}} \exp [ - k_{2} (t_{n - 1} + t)] + pB_{1} \exp [ - k_{1} (t_{n - 1} + t)] \\ & + (1 - p)B_{1} \exp [ - k_{2} (t_{n - 1} + t)] + pB_{2} \exp [ - k_{1} (t_{n - 1} - t_{1} + t)] \\ & + (1 - p)B_{2} \exp [ - k_{2} (t_{n - 1} - t_{1} + t)] + pB_{3} \exp [ - k_{1} (t_{n - 1} - t_{2} + t)] \\ & + (1 - p)B_{3} \exp [ - k_{2} (t_{n - 1} - t_{2} + t)] \\ & + \cdots + pB_{n} \exp ( - k_{1} t) + (1 - p)B_{n} \exp ( - k_{2} t) \\ \end{aligned} $$
(10)
$$ \begin{aligned} {\text{d}}D/{\text{d}}t = & mp[B_{1} \exp \{ - k_{1} (t_{n - 1} + t)\} + B_{2} \exp \{ - k_{1} (t_{n - 1} - t_{1} + t)\} \\ & + B_{3} \exp \{ - k_{1} (t_{n - 1} - t_{2} + t)\} + \cdots + B_{n} \exp ( - k_{1} t)] \\ & + k_{2} [B_{\text{o}} \exp \{ - k_{2} (t_{n - 1} + t)\} + (1 - p)\{ B_{1} \exp \{ - k_{2} (t_{n - 1} + t)\} \\ & + B_{2} \exp \{ - k_{2} (t_{n - 1} - t_{1} + t)\} + B_{3} \exp \{ - k_{2} (t_{n - 1} - t_{2} + t)\} + \cdots \\ & + B_{n} \exp ( - k_{2} t)\} ] - k_{\text{r}} D \\ \end{aligned} $$
(11)
$$ \begin{aligned} D = & [mp/(k_{\text{r}} - k_{1} )][B_{1} \exp ( - k_{1} t_{n - 1} ) + B_{2} \exp \{ - k_{1} (t_{n - 1} - t_{1} )\} \\ & + B_{3} \exp \{ - k_{1} (t_{n - 1} - t_{2} )\} + \cdots + B_{n} ][\exp ( - k_{1} t) - \exp ( - k_{\text{r}} t) \\ & + [k_{2} /(k_{\text{r}} - k_{2} )][B_{\text{o}} \exp ( - k_{2} t_{n - 1} ) + \{ B_{1} \exp ( - k_{2} t_{n - 1} ) \\ & + B_{2} \exp \{ - k_{2} (t_{n - 1} - t_{1} )\} + B_{3} \exp \{ - k_{2} (t_{n - 1} - t_{2} )\} + \cdots + B_{n} \} ][\exp ( - k_{2} t) - \exp ( - k_{\text{r}} t)] \\ & + D_{{{\text{o-}}n}} \exp ( - k_{\text{r}} t) \\ \end{aligned} $$
(12)
$$ \begin{aligned} D_{{{\text{o-}}n}} = & [mp/(k_{\text{r}} - k_{1} )][B_{1} \exp ( - k_{1} t_{n - 1} ) + B_{2} \exp \{ - k_{1} (t_{n - 1} - t_{1} )\} \\ & + B_{3} \exp \{ - k_{1} (t_{n - 1} - t_{2} )\} + \cdots + B_{n} ][1 - (k_{1} /k_{\text{r}} )\exp \{ (k_{\text{r}} - k_{1} )t_{\text{c}} \} ] \\ & + [k_{2} /(k_{\text{r}} - k_{2} )][B_{\text{o}} \exp ( - k_{2} t_{n - 1} ) + (1 - p)\{ B_{1} \exp (k_{2} t_{n - 1} ) \\ & + B_{2} \exp \{ - k_{2} (t_{n - 1} - t_{1} )\} + B_{3} \exp \{ - k_{2} (t_{n - 1} - t_{2} )\} + \cdots + B_{n} \} ][1 - (k_{2} /k_{\text{r}} )\exp \{ (k_{\text{r}} - k_{2} )t_{\text{c}} \} ] \\ \end{aligned} $$
(13)
$$ \begin{aligned} D_{\text{c}} = & (mp/k_{\text{r}} )[B_{1} \exp ( - k_{1} t_{n - 1} ) + B_{2} \exp \{ - k_{1} (t_{n - 1} - t_{1} )\} \\ & + B_{3} \exp \{ - k_{1} (t_{n - 1} - t_{2} )\} + \cdots + B_{n} ]\exp ( - k_{1} t_{\text{c}} ) \\ & + (k_{2} /k_{\text{r}} )[B_{\text{o}} \exp ( - k_{2} t_{n - 1} ) + (1 - p)\{ B_{1} \exp ( - k_{2} t_{n - 1} ) \\ & + B_{2} \exp \{ - k_{2} (t_{n - 1} - t_{1} )\} B_{3} \exp \{ - k_{2} (t_{n - 1} - t_{2} )\} + \cdots + B_{n} \} ]\exp \left( { - k_{2} t_{\text{c}} } \right) \\ \end{aligned} $$
(14)
$$ \begin{aligned} D_{{{\text{o-}}n }} = & [mp/(k_{\text{r}} - k_{1} )][B_{1} \exp ( - k_{1} t_{n - 1} ) + B_{2} \exp \{ - k_{1} (t_{n - 1} - t_{1} )\} \\ & + B_{3} \exp \{ - k_{1} (t_{n - 1} - t_{2} )\} + \cdots + B_{n} ] + \left[ {1 - \left( {k_{1}^{2} /k_{\text{r}}^{2} } \right)\exp \{ (k_{\text{r}} - k_{1} )t_{i} \} } \right] \\ & + [k_{2} /(k_{\text{r}} - k_{2} )][B_{\text{o}} \exp ( - k_{2} t_{n - 1} ) + (1 - p)\{ B_{1} \exp ( - k_{2} t_{n - 1} ) \\ & + B_{2} \exp \{ - k_{2} (t_{n - 1} - t_{1} )\} + B_{2} \exp \{ - k_{2} (t_{n - 1} - t_{1} )\} \\ & + B_{3} \exp \{ - k_{2} (t_{n - 1} - t_{2} )\} + \cdots + B_{n} \} ]\left[ {1 - \left( {k_{2}^{2} /k_{\text{r}}^{2} } \right)\exp (k_{\text{r}} - k_{2} )t_{i} } \right] \\ \end{aligned} $$
(15)
$$ \begin{aligned} D_{i} = & \left[ {mp(k_{1} + k_{\text{r}} )/k_{\text{r}}^{2} } \right][B_{1} \exp ( - k_{1} t_{n - 1} ) + B_{2} \exp \{ - k_{1} (t_{n - 1} - t_{1} )\} \\ & + B_{3} \exp \{ - k_{1} (t_{n - 1} - t_{2} )\} + \cdots + B_{n} ]\exp ( - k_{1} t_{i} ) \\ & + \left[ {k_{2} (k_{2} + k_{\text{r}} )/k_{\text{r}}^{2} } \right][B_{\text{o}} \exp ( - k_{2} t_{n - 1} ) + (1 - p)\{ B_{1} \exp ( - k_{2} t_{n - 1} ) \\ & + B_{2} \exp \{ - k_{2} (t_{n - 1} - t_{1} )\} + B_{3} \exp \{ - k_{2} (t_{n - 1} - t_{2} )\} + \cdots + B_{n} \} ]\exp ( - k_{2} t_{i} ) \\ \end{aligned} $$
(16)
$$ \begin{aligned} {\text{d}}D/{\text{d}}t = & mpB[\exp \{ - k_{1} (n - 1)t_{\text{o}} \} + \exp \{ - k_{1} (n - 2)t_{\text{o}} \} \\ & + \exp \{ - k_{1} (n - 3)t_{\text{o}} \} + \cdots + \exp \{ - k_{1} (n - n)t_{\text{o}} \} ]\exp ( - k_{1} t) \\ & + k_{2} [B_{\text{o}} \exp \{ - k_{2} (n - 1)t_{\text{o}} \} + (1 - p)B\{ \exp \{ - k_{2} (n - 1)t_{\text{o}} \} + \exp \{ - k_{2} (n - 2)t_{\text{o}} \} \\ & + \exp \{ - k_{2} (n - 3)t_{\text{o}} \} + \cdots + \exp \{ - k_{2} (n - n)t_{\text{o}} \} \exp ( - k_{2} t)-k_{\text{r}} D \\ \end{aligned} $$
(17)
$$ \begin{aligned} {\text{d}}D/{\text{d}}t = & mpB \left[ {\frac{{\exp \{ - k_{1} (n - 1)t_{\text{o}} \} [\exp (k_{1} nt_{\text{o}} ) - 1]}}{{\exp (k_{1} t_{\text{o}} ) - 1}}} \right]\exp ( - k_{1} t) \\ & + K_{2} \left[ {B_{\text{o}} \exp \{ - k_{2} (n - 1)t_{\text{o}} \} + (1 - p)B\left\{ {\frac{{\exp \{ - k_{2} (n - 1)t_{\text{o}} \} [\exp (k_{2} nt_{\text{o}} ) - 1]}}{{\exp (k_{2} t_{\text{o}} ) - 1}}} \right\}} \right]\exp ( - k_{2} t) - k_{\text{r}} D \\ \end{aligned} $$
(18)
$$ \begin{aligned} D = & [mpB/(k_{\text{r}} - k_{1} )]\left[ {\frac{{\exp \{ - k_{1} (n - 1)t_{\text{o}} \} [\exp (k_{1} nt_{\text{o}} ) - 1]}}{{\exp (k_{1} t_{\text{o}} ) - 1}}} \right][\exp ( - k_{1} t) - \exp ( - k_{\text{r}} t)] \\ & + [k_{2} /(k_{\text{r}} - k_{2} )]\left[ {\left[ {B_{\text{o}} \exp \{ - k_{2} (n - 1)t_{\text{o}} \} + (1 - p)B\left\{ {\frac{{\exp \{ - k_{2} (n - 1)t_{\text{o}} \} [\exp (k_{2} nt_{\text{o}} ) - 1]}}{{\exp (k_{2} t_{\text{o}} ) - 1}}} \right\}} \right][\exp ( - k_{2} t) - \exp (k_{\text{r}} t)]D_{{{\text{o-}}n}} \exp ( - k_{\text{r}} t)} \right] \\ \end{aligned} $$
(19)
$$ \begin{aligned} D_{{{\text{o-}}n}} = & [mpB/(k_{\text{r}} - k_{1} )]\left[ {\frac{{\exp \{ - k_{1} (n - 1)t_{\text{o}} \} [\exp (k_{1} nt_{\text{o}} ) - 1]}}{{\exp (k_{1} t_{\text{o}} ) - 1}}} \right][1 - (k_{1} /k_{\text{r}} )\exp \{ (k_{\text{r}} - k_{1} )t_{\text{c}} \} ] \\ & + [k_{2} /(k_{\text{r}} - k_{2} )]\left[ {B_{\text{o}} \exp \{ - k_{2} (n - 1)t_{\text{o}} \} + (1 - p)B\left\{ {\frac{{\exp \{ - k_{2} (n - 1)t_{\text{o}} \} [\exp (k_{2} nt_{\text{o}} ) - 1]}}{{\exp (k_{2} t_{\text{o}} ) - 1}}} \right\}} \right] \\ & \times [1 - (k_{2} /k_{\text{r}} )\exp \{ (k_{\text{r}} - k_{2} )t_{\text{c}} \} ] \\ \end{aligned} $$
(20)
$$ \begin{aligned} D_{c} = & [mpB/k_{\text{r}} ]\left[ {\frac{{\exp \{ - k_{1} (n - 1)t_{\text{o}} \} [\exp (k_{1} nt_{\text{o}} ) - 1]}}{{\exp (k_{1} {\text{t}}_{\text{o}} ) - 1}}} \right]\exp ( - k_{1} t_{\text{c}} ) \\ & + [k_{2} /k_{\text{r}} ]\left[ {\left[ {B_{\text{o}} \exp \{ - k_{2} (n - 1)t_{\text{o}} \} + (1 - p)B\left\{ {\frac{{\exp \{ - k_{2} (n - 1)t_{\text{o}} \} [\exp (k_{2} nt_{\text{o}} ) - 1]}}{{\exp (k_{2} {\text{t}}_{\text{o}} ) - 1}}} \right\}} \right]\exp ( - k_{2} t_{\text{c}} )} \right] \\ \end{aligned} $$
(21)
$$ \begin{aligned} D_{{{\text{o-}}n}} = & [mpB/(k_{\text{r}} - k_{1} )]\left[ {\frac{{\exp \{ - k_{1} (n - 1)t_{\text{o}} \} [\exp (k_{1} nt_{\text{o}} ) - 1]}}{{\exp (k_{1} t_{\text{o}} ) - 1}}} \right]\left[ {1 - \left( {k_{1}^{2} /k_{\text{r}}^{2} } \right)\exp \{ (k_{\text{r}} - k_{1} )t_{1} \} } \right] \\ & + [k_{2} /(k_{\text{r}} - k_{2} )]\left[ {B_{\text{o}} \exp \{ - k_{2} (n - 1)t_{\text{o}} \} + (1 - p)B\left\{ {\frac{{\exp \{ - k_{2} (n - 1)t_{\text{o}} \} [\exp (k_{2} nt_{\text{o}} ) - 1]}}{{\exp (k_{2} t_{\text{o}} ) - 1}}} \right\}} \right] \\ & \times \left[ {1 - \left( {k_{2}^{2} /k_{\text{r}}^{2} } \right)\exp \{ (k_{\text{r}} - k_{2} )t_{1} \} } \right] \\ \end{aligned} $$
(22)
$$ \begin{aligned} D_{i} = & \left[ {mpB(k_{1} + k_{\text{r}} )/K_{\text{r}}^{2} } \right]\left[ {\frac{{\exp \{ - k_{1} (n - 1)t_{\text{o}} \} [\exp (k_{1} nt_{\text{o}} ) - 1]}}{{\exp (k_{1} t_{\text{o}} ) - 1}}} \right]\exp ( - k_{1} t_{1} ) \\ & + \left[ {k_{2} (k_{2} + k_{\text{r}} )/k_{\text{r}}^{2} } \right]\left[ {\left[ {B_{\text{o}} \exp \{ - k_{2} (n - 1)t_{\text{o}} \} + (1 - p)B\left\{ {\frac{{\exp \{ - k_{2} (n - 1)t_{\text{o}} \} [\exp (k_{2} nt_{\text{o}} ) - 1]}}{{\exp (k_{2} t_{\text{o}} ) - 1}}} \right\}} \right]\exp ( - k_{2} t_{i} )} \right]. \\ \end{aligned} $$
(23)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhargava, D.S. Simplified DO sag models for rapid BOD removal. Environmentalist 29, 411–420 (2009). https://doi.org/10.1007/s10669-009-9221-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10669-009-9221-9

Keywords

Navigation