The Environmentalist

, Volume 28, Issue 4, pp 458–465 | Cite as

Exposure to radiation from global system for mobile communications at 1,800 MHz significantly changes gene expression in rat hippocampus and cortex

  • Henrietta Nittby
  • Bengt Widegren
  • Morten Krogh
  • Gustav Grafström
  • Henrik Berlin
  • Gustav Rehn
  • Jacob L. Eberhardt
  • Lars Malmgren
  • Bertil R. R. Persson
  • Leif G. SalfordEmail author


We have earlier shown that radio frequency electromagnetic fields can cause significant leakage of albumin through the blood–brain barrier of exposed rats as compared to non-exposed rats, and also significant neuronal damage in rat brains several weeks after a 2 h exposure to a mobile phone, at 915 MHz with a global system for mobile communications (GSM) frequency modulation, at whole-body specific absorption rate values (SAR) of 200, 20, 2, and 0.2 mW/kg. We have now studied whether 6 h of exposure to the radiation from a GSM mobile test phone at 1,800 MHz (at a whole-body SAR-value of 13 mW/kg, corresponding to a brain SAR-value of 30 mW/kg) has an effect upon the gene expression pattern in rat brain cortex and hippocampus—areas where we have observed albumin leakage from capillaries into neurons and neuronal damage. Microarray analysis of 31,099 rat genes, including splicing variants, was performed in cortex and hippocampus of 8 Fischer 344 rats, 4 animals exposed to global system for mobile communications electromagnetic fields for 6 h in an anechoic chamber, one rat at a time, and 4 controls kept as long in the same anechoic chamber without exposure, also in this case one rat at a time. Gene ontology analysis (using the gene ontology categories biological processes, molecular functions, and cell components) of the differentially expressed genes of the exposed animals versus the control group revealed the following highly significant altered gene categories in both cortex and hippocampus: extracellular region, signal transducer activity, intrinsic to membrane, and integral to membrane. The fact that most of these categories are connected with membrane functions may have a relation to our earlier observation of albumin transport through brain capillaries.


Blood–brain barrier Gene expression Gene ontology Microwaves Mobile phone 



We are grateful to Susanne Strömblad and Catharina Blennow for excellent technical assistance. We acknowledge the help by microarray labwork and analysis by Ann-Sofie Albrekt at the Microarray Resource Centre at Lund University. This study was supported by the Hans and Märit Rausing Charitable Foundation, the Lund University Hospital Funds, the Swedish Foundation for Strategic Research and the Knut and Alice Wallenberg Foundation through the Swegene consortium and the Strategic Science Foundation (SSF) CREATE Health centre (MK).


  1. Aas AT, Brun A, Blennow C, Strömblad S, Salford LG (1995) The RG2 rat glioma model. J Neurooncol 23:175–183CrossRefGoogle Scholar
  2. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29CrossRefGoogle Scholar
  3. Belyaev I (2005) Non-thermal biological effects of microwaves. Microw Rev 11:13–29, available on Google Scholar
  4. Belyaev IY, Bauréus Koch C, Terenius O, Roxstrom-Lindquist K, Malmgren LO, Sommer WH, Salford LG, Persson BRR (2006) Exposure of rat brain to 915 MHz GSM microwaves induces changes in gene expression but not double stranded DNA breaks or effects on chromatin conformation. Bioelectromagnetics 27:295–306CrossRefGoogle Scholar
  5. Bauréus Koch CLM, Sommarin M, Persson BRR, Salford LG, Eberhardt JL (2003) Interaction between weak low frequency magnetic fields and cell membranes. Bioelectromagnetics 24:395–402Google Scholar
  6. Breslin T, Eden P, Krogh M (2004) Comparing functional annotation analyses with Catmap. BMC Bioinformatics 5:193CrossRefGoogle Scholar
  7. Corcoran EE, Means AR (2000) Defining Ca2+/Calmodulin protein kinase cascades in transcriptional regulation. J Biol Chem 276:2975–2978CrossRefGoogle Scholar
  8. Czyz J, Guan K, Zeng Q, Nikolova T, Meister A, Schönborn F, Schuderer J, Kuster N, Wobus AM (2004). High frequency electromagnetic fields (GSM signals) affect gene expression levels in tumor suppressor p53-deficient embryonic stem cells. Bioelectromagnetics 25:296–307CrossRefGoogle Scholar
  9. Friedman J, Kraus S, Hauptman Y, Schiff Y, Seger R (2007) Mechanism of a short-term ERK activation by electromagnetic fields at mobile phone frequency. Biochem J 559–568Google Scholar
  10. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tiernev L, Yang JY, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80CrossRefGoogle Scholar
  11. Gurisik E, Warton K, Martin D, Valenzuela S (2006) An in vitro study of the effects of exposure to a GSM signal in two human cell lines: monocytic U937 and neuroblastoma SK-N-SH. Cell Biol Int 30:93–799CrossRefGoogle Scholar
  12. Hassel B, Iversen EG, Fonnum F (1994) Neurotoxicity of albumin in vivo. Neurosci Lett 167:29–32CrossRefGoogle Scholar
  13. ICNIRP (1998) Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz). Health Phys 74:494–522Google Scholar
  14. Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 3:299–314CrossRefGoogle Scholar
  15. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264CrossRefGoogle Scholar
  16. LeBlanc D, Hatcher D, Post R (2000) Finite-difference time-domain front-end utility. Brooks Airforce Base, Texas, USAGoogle Scholar
  17. Lee S, Johnson D, Dunban K, Dong H, Ge X, Kim YC, Wing C, Jayathilaka N, Emmanuela N, Zhou CQ, Gerber HL, Tseng CC, Wang SM (2005) 2.45GHz radiofrequency fields alter gene expression in cultured human cells. FEBS Lett 579:4829–4836CrossRefGoogle Scholar
  18. Li HH, Lee SM, Cai Y, Suttin RL, Hovida DA (2004) Differential gene expression in hippocampus following experimental brain trauma reveals distinct features of moderate and severe injuries. J Neurotrauma 21:1141–1153CrossRefGoogle Scholar
  19. Malmgren L (1998) Radio frequency systems for NMR imaging coil development and studies of non-thermal biological effects. Series of licentiate and doctoral theses. No. 6, Department of Applied Electronics, Lund University, Lund, SwedenGoogle Scholar
  20. Nadal A, Fuentes E, Pastor J, McNaughton PA (1997) Plasma albumin induces calcium waves in rat cortical astrocytes. Glia 19:343–351CrossRefGoogle Scholar
  21. Nikolova T, Czyz J, Rolletschek A, Blyszczuk P, Fuch J, Jovtchec G (2005) Electromagnetic fields affect transcript levels of apoptosis-related genes in embryonic stem cell-derived neural progenitor cells. FASEB J 19:1686–1688Google Scholar
  22. Nylund R, Leszczynski D (2006) Mobile phone radiation causes changes in gene and protein expression in human endothelial cell lines and the response seems to be genome- and proteome-dependent. Proteomics 6:4769–80CrossRefGoogle Scholar
  23. Pacini S, Ruggiero M, Sardi I, Aterini S, Gulisano F, Fulisano M (2002) Exposure to global system for mobile communication (GSM) cellular phone radiofrequency alters gene expression, proliferation, and morphology of human skin fibroblasts. Oncol Res 13:19–24Google Scholar
  24. Persson BRR, Salford LG (1995) Permeability of the blood–brain barrier in rats induced by continuous wave and pulse-modulated 915 MHz electromagnetic radiation exposure in TEM-cells. In: Chiabrera A, Juutilainen J (eds) Proceedings of the COST 244 workshop, Kuopio Finland, 3–4 September 1995, EU DG XIII, Brussels: COST 244, pp 66–72 Google Scholar
  25. Persson BRR, Salford LG, Brun A (1997) Blood–Brain Barrier permeability in rats exposed to electromagnetic fields used in wireless communication. Wirel Netw 3:455–461CrossRefGoogle Scholar
  26. Qutob S, Chauchan V, Bellier P, Yauk C, Douglas G, Berndt L, Williams A, Gajda GB, Lemay E, Thansandote A, McNamee JP (2006) Microarray gene expression profiling of human glioblastoma cell line exposed in vitro to a 1.9 GHz pulse-modulated radiofrequency field. Radiat Res 165:636–44CrossRefGoogle Scholar
  27. Remondini D, Nylund R, Reivinen J, Poulletier de Gannes F, Veyret B, Lagroye I, Haro E, Trillo MA, Capri M, Franceschi C, Schlatterer K, Gminski R, Fitzner R, Tauber R, Schuderer J, Kuster N, Leszczynski D, Bersani F, Maercker C (2006) Gene expression changes in human cells after exposure to mobile phone microwaves. Proteomics 6:4745–54CrossRefGoogle Scholar
  28. Salford LG, Brun A, Eberhardt J, Malmgren L, Persson B (1992) Electromagnetic field-induced permeability of the blood–brain barrier shown by immunohistochemical methods. In: Nordén B, Ramel C (eds) Interactin mechanism of low-level electromagnetic fields in living systems. Oxford University Press, Oxford, pp 251–258Google Scholar
  29. Salford LG, Brun A, Eberhardt JL, Persson BRR (1993) Permeability of the blood–brain-barrier induced by 915 MHz electromagnetic-radiation, continuous wave and modulated at 8, 16, 50 And 200 Hz. Bioelectrochem Bioenerg 30:293–301CrossRefGoogle Scholar
  30. Salford LG, Brun A, Sturesson K, Eberhardt JL, Persson BRR (1994) Permeability of the blood–brain-barrier induced by 915 MHz electromagnetic-radiation, continuous wave and modulated at 8, 16, 50 and 200 Hz. Microsc Res Tech 6:535–542CrossRefGoogle Scholar
  31. Salford LG, Persson BRR, Brun A (1997) Neurological aspects on wireless communication. In: Bernhardt JH, Matthes R, Repacholi MH (eds) Non-Thermal Effects of RF electromagnetic fields. International Commission on Non-Ionizing Radiation Protection, Munich, Germany, pp 131–143Google Scholar
  32. Salford LG, Persson B, Malmgren L, Brun A (2001) Téléphonie Mobile et Barrière Sang-Cerveau. In: Marco P (ed) Téléphonie Mobile—Effets Potentiels sur la Santé des Ondes Électromagnétiques de Haute Fréquence, Embourg, Belgium. pp 141–152Google Scholar
  33. Salford LG, Brun AE, Eberhardt JL, Malmgren L, Persson BRR (2003) Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ Health Perspect 111:881–883 (discussion A408)Google Scholar
  34. Shivers R, Kavaliers M, Teskey G, Prato F, Pelletier R (1987) Magnetic resonance imaging temporarily alters blood–brain barrier in the rat. Neurosci Lett 76:25–31CrossRefGoogle Scholar
  35. Sokrab TEO, Johansson BB, Kalimo H, Olsson Y (1988) A transient hypertensive opening of the blood–brain barrier can lead to brain damage. Extravasation of serum proteins and cellular changes in rats subjected to aortic compression. Acta Neuropathol 75:557–565CrossRefGoogle Scholar
  36. Stagg RB, Havel LH III, Pastorian K, Cain C, Adey WR, Byus CV (2001) Effect of immobilization and concurrent exposure to a pulse-modulated microwave field on core body temperature, plasma ACTH and corticosteroid, and brain ornithine decarboxylase, Fos and Jun mRNA. Radiat Res 155:584–592Google Scholar
  37. Stewart W (2000) Mobile phones and health [Internet]. Independent IEGMP expert group on mobile phones. Available from (Last updated 16 October 2001)
  38. Zhao R, Zhang SZ, Yao GD, Lu DQ, Huai J, Xu ZP (2006) Effect of 1.8 GHz radiofrequency electromagnetic fields on the expression of microtubule associated protein 2 in rat neurons [Article in Chinese]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 24:222–225Google Scholar
  39. Zhao T, Zou S, Knapp PE (2007) Exposure to cell phone radiation up-regulated apoptosis genes in primary cultures of neurons and astrocytes. Neurosci Lett 412:34–38CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Henrietta Nittby
    • 1
  • Bengt Widegren
    • 2
  • Morten Krogh
    • 3
  • Gustav Grafström
    • 4
  • Henrik Berlin
    • 1
  • Gustav Rehn
    • 1
  • Jacob L. Eberhardt
    • 4
  • Lars Malmgren
    • 5
  • Bertil R. R. Persson
    • 4
  • Leif G. Salford
    • 1
    Email author
  1. 1.Departments of NeurosurgeryLund University HospitalLundSweden
  2. 2.Tumour ImmunologyLund University, the Rausing Laboratory and Lund University Hospital LundSweden
  3. 3.Theoretical Physics and Protein TechnologyLund University, the Rausing Laboratory and Lund University HospitalLundSweden
  4. 4.Medical Radiation PhysicsLund University, the Rausing Laboratory and Lund University HospitalLundSweden
  5. 5.Applied ElectronicsLund University, the Rausing Laboratory and Lund University HospitalLundSweden

Personalised recommendations