Skip to main content
Log in

50 Hz alternating extremely low frequency magnetic fields affect excitability, firing and action potential shape through interaction with ionic channels in snail neurones

  • Published:
The Environmentalist Aims and scope Submit manuscript

Abstract

In spite of growing concern about the influence of magnetic fields on biological systems, the interaction between extremely low frequency magnetic field (ELF magnetic fields) and biological structures at the cellular level remains obscure. The aim of this study was to investigate if 50 Hz magnetic fields could have an effect on the neuronal excitability and firing responses. Under Current-Clamp condition, exposure to 50 Hz ELF magnetic fields at 2 mT or 0.8 mT intensities resulted in an increase in the peak amplitude of action potential and after hyperpolaization potential in a time dependent manner. Both magnetic field intensities decreased also the firing frequency and the duration of action potential. Taken together, these data suggest that 50 Hz ELF magnetic fields at 2 mT or 0.8 mT intensities may change the electrophysiological behavior of neuronal cells and underlying ion channel currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, C. M., & Eckert, R. (1987). Voltage activated Ca2+ channels that must be phosphorylated to respond to membrane depolarization potential. Proceedings of the National Academy of Sciences, 84, 2518–2522.

    Article  CAS  Google Scholar 

  • Azanza, M. J., & Moral, A. D. (1996). Isolated neuron amplitude spike decrease under static magnetic fields. Journal of Magnetism and Magnetic Materials, 158, 593–549.

    Article  Google Scholar 

  • Bal, R., Janahmadi, M., Green, G. G., & Sanders, D. J. (2000). Effect of calcium and calcium channel blockers on transient outward current of F76 and D1 neuronal soma membranes in the subesophageal ganglia of Helix aspersa. The Journal of Membrane Biology, 173, 179–185.

    Article  CAS  Google Scholar 

  • Bal, R., Janahmadi, M., Green, G. G., & Sanders, D. J. (2001). Two kinds of transient outward currents, IA and IAdepol, in F76 and D1 soma membranes of the subesophageal ganglia of Helix aspersa. The Journal of Membrane Biology, 179, 71–78.

    Article  CAS  Google Scholar 

  • Borst, J. G., & Sakmann, B. (1999a). Effects of changes in action potential shape on calcium current and transmitter release in calyx-type synapse of the rat auditory brainstem. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 354(1381), 347–355.

    Article  CAS  Google Scholar 

  • Borst, J. G., & Sakmann, B. (1999b). Depletion of calcium in the synaptic cleft of a calyx-type synapse in the rat brainstem. Journal of Physiology, 15(521), 123–133.

    Article  Google Scholar 

  • Calvo, A. C., & Azanza, M. J. (1999). Synaptic neurone activity under 50 Hz alternating magnetic fields. Comparative Biochemistry and Physiology. Part C, Pharmacology, Toxicology & Endocrinology, 124, 99–107.

    Article  CAS  Google Scholar 

  • Crest, M., & Gola, M. (1993). Large conductance Ca2+-activated K+ channels are involved in both spike shaping and firing regulation in Helix neurones. Journal of Physiology, 465, 265–287.

    CAS  Google Scholar 

  • Cridland, N. A., Haylock, R. G., & Saunders, R. D. (1999). 50 Hz magnetic field exposure alters onset of S-phase in normal human fibroblasts. Bioelectromagnetics, 20(7), 46–52.

    Article  Google Scholar 

  • Faizi, M., Janahmadi, M., & Mahmoudian, M. (2003). The effect of mebudipine and dibudipine, two new Ca2+ channel blockers, in comparison with nifedipine on Ca2+ spikes of F1 neuronal soma membrane in Helix aspersa. Acta Physiologica Hungarica, 90(3), 243–254.

    Article  CAS  Google Scholar 

  • Goh, J. W., & Pennefather, P. S. (1987). Pharmacological and physiological properties of the after-hyperpolarization current of bullfrog ganglion neurones. Journal of Physiology, 394, 315–330.

    CAS  Google Scholar 

  • Gola, M. C., Ducreux, C., & Chagneux, H. (1990). Ca2+ activated K+ current involvement in neuronal function revealed by in situ single channel analysis in Helix neurones. Journal of Physiology, 420, 73–109.

    CAS  Google Scholar 

  • Hermann, A., & Erxleben, C. (1987). Charybdotoxin selectively blocks small Ca activated K channels in Aplysia neurones. The Journal of General Physiology, 90, 27–47.

    Article  CAS  Google Scholar 

  • Kawai, T., & Watanabe, M. (1986). Blockage of Ca2+ activated K+ conductance by apamin in rat sympathetic neurones. British Journal of Pharmacology, 87, 225–232.

    CAS  Google Scholar 

  • Kerkut, G. A., Lambert, J. D. C., Gayton, R. J., Loker, J. E., & Walker, R. J. (1975). Mapping of nerve cells in the suboesophageal ganglia of Helix aspersa. Journal of Comparitive Physiology, 50A, 1–25.

    Google Scholar 

  • Kinouchi, Y., & Tasaka, T. (1997). Effects of extremely low frequency electromagnetic fields for ions in solutions. Electronics and Communications in Japan, 6, 13–22.

    Google Scholar 

  • Liboff, A. R. (1985). Cyclotron resonance in membrane transport. In A. Chiabrera, C. Nicolini, & H. P. Schwan (Eds.), Interaction between electromagnetic fields and cells (pp. 281). London: Plenum Pub. Co.

  • Macias, M. Y., Battocletti, J. H., Sutton, C. H., Pintar, F. A., & Maiman, D. J. (2000). Directed and enhanced neurite growth with pulsed magnetic field stimulation. Bioelectromagnetics, 21(4), 272–286.

    Article  CAS  Google Scholar 

  • Madison, D. V., & Nicoll, R. A. (1986). Cyclic adenosine 3′,5′-monophosphate mediates beta-receptor actions of noradrenaline in rat hippocampal pyramidal cells. Journal of Physiology, 372, 245–259.

    CAS  Google Scholar 

  • Mathie, A., Kennard, L. E., & Veale, E. L. (2003). Neuronal ion channels and the sensitivity to extremely low frequency electric field effects. Radiation Protection Dosimetry, 106(4), 311–316.

    CAS  Google Scholar 

  • Morgado-Valle, C., Verdugo-Diaz, L., Garcia, D. E., Morales-Orozco, C., & Drucker-Colin, R. (1998). The role of voltage-gated Ca2+ channels in neurite growth of cultured chromaffin cells induced by extremely low frequency (ELF) magnetic field stimulation. Cell and Tissue Research, 291(2), 217–230.

    Article  CAS  Google Scholar 

  • Rosen, A. D. (2003a). Mechanism of action moderate-intensity static magnetic fields on biological system. Cell Biochemistry and Biophysics, 39(2), 163–173.

    Article  CAS  Google Scholar 

  • Rosen, A. D. (2003b). Effects of a 125 mT static magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells. Bioelectromagnetics, 24(7), 517–523.

    Article  CAS  Google Scholar 

  • Sah, P. (1996). Ca2+-activated K+ currents in neurones: types, physiological roles and modulation. Trends in Neurosciences, 19, 150–154.

    Article  CAS  Google Scholar 

  • Sakakibara, M., Okuda, F., Nomura, K., Watanabe, K., Meng, H., Horikoshi, T., & Lukowiak, K. (2005). Potassium currents in isolated statocyst neurones and RPeD1 in the pond snail Lymnaea stagnalis. Journal of Neurophysiology, 94, 3884–3892.

    Article  CAS  Google Scholar 

  • Solntseva, E. I. (1995). Properties of slow early potassium current in neurones of snail Helix pomatia. General Pharmacology, 26, 1719–1726.

    CAS  Google Scholar 

  • Sonnier, H., Kolomytkin, O. V., & Marino, A. A. (2000). Resting potential of excitable neuroblastoma cells in weak magnetic field. Cellular and Molecular Life Sciences, 57(3), 514–520.

    Article  CAS  Google Scholar 

  • Tell, F., & Bradley, R. (1994). Whole- cell analysis of ion currents underlying the firing pattern of neurons in the gustatory zone of nucleus tracts solitarii. Journal of Neurophysiology, 71(2), 479–492.

    CAS  Google Scholar 

  • Thompson, S. H. (1977). Three pharmacologically distinct potassium channels in molluscan neurones. Journal of Physiology, 265, 465–488.

    CAS  Google Scholar 

  • Vatanparast, J., Janahmadi, M., Asgari, A. R., Sepehri, H., & Haeri-Rohani, A. (2006). Paraoxon suppresses Ca2+ spike and afterhyperpolarization in snail neurons: relevance to hyperexcitability induction. Brain Research, 1083(1), 110–117.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahyar Janahmadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moghadam, M.K., Firoozabadi, S.M. & Janahmadi, M. 50 Hz alternating extremely low frequency magnetic fields affect excitability, firing and action potential shape through interaction with ionic channels in snail neurones. Environmentalist 28, 341–347 (2008). https://doi.org/10.1007/s10669-007-9143-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10669-007-9143-3

Keywords

Navigation