Pulsed electromagnetic field therapy history, state of the art and future

Abstract

Magnetic and electromagnetic fields are now recognized by the 21st century medicine as real physical entities that promise the healing of various health problems, even when conventional medicine has failed. Today magnetotherapy provides a non-invasive, safe, and easy method to directly treat the site of injury, the source of pain and inflammation, and other types of diseases and pathologies. Millions of people worldwide have received help in treatment of musculoskeletal system, as well as pain relief. Pulsed electromagnetic fields are one important modality in magnetotherapy and recent technological innovations, such as Curatron pulsed electromagnetic field devices, offer excellent, state of the art computer controlled therapy system. In this article the development, state of the art and future of pulsed electromagnetic field therapy are discussed.

This is a preview of subscription content, log in to check access.

References

  1. Adey, W. R. (1986). The sequence and energetics of cell membrane transducing coupling to intracellular enzyme systems. Bioelectrochem Bioenergetics, 15, 447–456.

    Article  CAS  Google Scholar 

  2. Adey, W. R. (2004). Potential therapeutic application of nonthermal electromagnetic fields: Ensemble organization of cells in tissue as a factor in biological tissue sensing. In P. J. Rosch, & M. S. Markov (Eds.), Bioelectromagnetic medicine (pp. 1–15). New York: Marcel Dekker.

    Google Scholar 

  3. Bassett, C. A. L., Pawluk, R. J., & Pilla, A. A. (1974). Acceleration of fracture repair by electromagnetic fields. Annals of the New York Academy of Sciences, 238, 242–262.

    Article  CAS  Google Scholar 

  4. Bassett, C. A. L., Pilla, A. A., & Pawluk, R. (1977). A non-surgical salvage of surgically-resistant pseudoarthroses and non-unions by pulsing electromagnetic fields. Clinical Orthopaedics, 124, 117–131.

    Google Scholar 

  5. Bental, R. H. C. (1986). Low-level pulsed radiofrequency fields and the treatment of soft-tissue injuries. Bioelectrochem Bioenergetics, 16, 531–548.

    Article  Google Scholar 

  6. Blackman, C. F., Blanchard, J. P., Benane, S. G., & House, D. E. (1995). The ion parametric resonance model predicts magnetic field parameters that affect nerve cells. Federation of American Societies for Experimental Biology Journal, 9, 547–551.

    CAS  Google Scholar 

  7. Blanchard, J. P., & Blackman, C. F. (1994). Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems. Bioelectromagnetics, 15, 217–238.

    Article  CAS  Google Scholar 

  8. Bianco, B., & Chiabrera, A. (1992). From the Langevin-Lorentz to the Zeeman model of electromagnetic effects on ligand-receptor binding. Bioelectrochem Bioenergetics, 28, 355–365.

    Article  CAS  Google Scholar 

  9. Canaday, D. J., & Lee, R. C. (1991) Scientific basis for clinical applications of electric fields in soft-tissue Repair. In C. T. Brighton, & S.R. Pollack (Eds.), Electromagnetics in Biology and Medicine (pp. 275–291). San Francisco Press Inc.

  10. Canedo-Dorantes, L., Garcia-Cantu, R., Barrera, R., Mendez- Ramirez, I., Navarro, V. H., & Serrano, G. (2002). Healing of chronic arterial and venous leg ulcers with systemic electromagnetic fields. Archives of Medical Research, 33, 281–289.

    Article  Google Scholar 

  11. Comorosan, S., Vasilco, R., Arghiropol, M., Paslaru, L., Jieanu, V., & Stelea, S. (1993). The effect of Diapulse therapy on the healing of decubitus ulcer. Romanian Journal of Physiology, 30, 41–45.

    CAS  Google Scholar 

  12. Edmonds, D. T. (1993). Larmor precession as a mechanism for the detection of static and alternating magnetic fields. Bioelectrochemistry and Bioenergetics, 30, 3–12.

    Article  Google Scholar 

  13. Engstrom, S. (1996). Dynamic properties of Lednev’s parametric resonance mechanism. Bioelectromagnetics, 17, 58–70.

    Article  CAS  Google Scholar 

  14. Engstrom, S., Markov, M. S., McLean, M. J., Holcomb, R. R., & Markov, J. M. (2002). Effects of non-uniform static magnetic fields on the rate of myosin phosphorylation. Bioelectromagnetics, 23, 475–479.

    Article  CAS  Google Scholar 

  15. Ericsson, A. D., Hazlewood, C. F., Markov, M. S., & Crawford, F. (2004). Specific Biochemical changes in circulating lymphocytes following acute ablation of symptoms in Reflex Sympathetic Dystrophy (RSD): A pilot study. In P. Kostarakis (Ed.), Proceedings of 3rd international workshop on biological effects of EMF (pp. 683–688). Kos, Greece, October 4–8, 2004, ISBN 960-233-151-8.

  16. Fitzsimmons, R. J., Ryaby, J. T., Magee, F. P., & Baylink, D. J. (1994). Combined magnetic fields increase net calcium flux in bone cells. Calcified Tissue International, 55, 376–380.

    Article  CAS  Google Scholar 

  17. Foley-Nolan, D., Barry, C., Coughlan, R. J., O’Connor, P., Roden, D. (1990) Pulsed high frequency (27 MHz) Electromagnetic therapy for persistent neck pain: a double blind placebo-controlled study of 20 patients. Orthopedics, 13, 445–451.

    CAS  Google Scholar 

  18. Gardner, S. E., Frantz, R. A., & Schmidt, F. L. (1999). Effect of electrical stimulation on chronic wound healing: A meta-analysis. Wound Repair and Regeneration, 7, 495–503.

    Article  CAS  Google Scholar 

  19. Ginsburg, A. J. (1934). Ultrashort radio waves as a therapeutic agent. Medical Record, 19, 1–8.

    Google Scholar 

  20. Hazlewood, C. F., & Markov, M. S. (2006). Magnetic fields for relief of myofascial and/or low back pain through trigger points. In P. Kostarakis (Ed.), Proceedings of Forth International Workshop Biological effects of electromagnetic fields (pp. 475–483). Crete 16–20 October 2006, ISBN# 960-233-172-0.

  21. Ieran, M., Zaffuto, S., Bagnacani, M., Annovi, M., Moratti, A., & Cadossi, R. (1990). Effect of low frequency electromagnetic fields on skin ulcers of venous origin in humans: a double blind study. Journal of Orthopaedic Research, 8, 276–282.

    Article  CAS  Google Scholar 

  22. Itoh, M., Montemayor, J. S., Jr., Matsumoto, E., Eason, A., Lee, M. H., & Folk, F. S. (1991). Accelerated wound healing of pressure ulcers by pulsed high peak power electromagnetic energy (Diapulse). Decubitus, 4, 24–25, 29–34.

  23. Kotnik, T., & Miklavcic, D. (2006). Theoretical analysis of voltage inducement on organic molecules. In P. Kostarakis (Ed.), Proceedings of forth international workshop biological effects of electromagnetic fields (pp. 217–226). Crete 16–20 October 2006, ISBN# 960-233-172-0.

  24. Lee, R. C., Canaday, D. J., & Doong, H. (1993). A review of the biophysical basis for the clinical application of electric fields in soft-tissue repair. The Journal of Burn Care and Rehabilitation, 14, 319–335.

    Article  CAS  Google Scholar 

  25. Lednev, V. V. (1991). Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics, 12, 71–75.

    Article  CAS  Google Scholar 

  26. Liboff, A. R. (1985). Cyclotron resonance in membrane transport. In A. Chiabrera, C. Nicolini, & H. P. Schwan (Eds.), Interactions between in interactions between electromagnetic fields and cells (pp. 281–396). New York: Plenum Press.

    Google Scholar 

  27. Liboff, A. F., Fozek, R. J., Sherman, M. L., McLeod B. R., & Smith, S. D. (1987). Ca2+-45 cyclotron resonance in human lymphocytes. Journal of Bioelectricity, 6, 13–22.

    CAS  Google Scholar 

  28. Liboff, A. R., Cherng, S., Jenrow, K. A., & Bull, A. (2003). Calmodulin-dependent cyclic nucleotide phosphodiesterase activity is altered by 20 mT magnetostatic fields. Bioelectromagnetics, 24, 32–38.

    Article  CAS  Google Scholar 

  29. Liboff, A. R. (2004). Signal shapes in electromagnetic therapies: A primer. In P. J. Rosch & M. S. Markov (Eds.), Bioelectromagnetic medicine (pp. 17–37). NY: Marcel Dekker.

  30. Liburdy, R. P., & Yost, M. G. (1993). Tme-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte. In M. Blank (Ed.), Electricity and magnetism in biology and medicine (pp. 331–334). San Francisco Press.

  31. Markov, M. S., & Pilla, A. A. (1993). Ambient range sinusoidal and DC magnetic fields affect myosin phosphorylation in a cell-free preparation. In M. Blank (Ed.), Electricity and magnetism in biology and medicine (pp. 323–327). San Francisco Press.

  32. Markov, M. S., Ryaby, J. T., Kaufman, J. J., & Pilla, A. A. (1992). Extremely weak AC and DC magnetic field significantly affect myosin phosphorylation. In M. J. Allen, S. F. Cleary, A. E. Sowers, & D. D. Shillady (Eds.), Charge and field effects in biosystems-3 (pp. 225–230). Boston: Birkhauser.

    Google Scholar 

  33. Markov, M. S., Wang, S., & Pilla, A. A. (1993). Effects of weak low frequency sinusoidal and DC magnetic fields on myosin phosphorylation in a cell-free preparation. Bioelectrochem Bioenergetics, 30, 119–125.

    Article  CAS  Google Scholar 

  34. Markov, M. S., Muehsam, D. J., & Pilla, A. A. (1994). Modulation of cell-free myosin phosphorylation with pulsed radio frequency electromagnetic fields. In M. J. Allen, S. F. Cleary, & A. E. Sowers (Eds.), Charge and field effects in biosystems 4 (pp. 274–288). New Jersey: World Scientific.

    Google Scholar 

  35. Markov, M. S., & Pilla, A. A. (1994a). Static magnetic field modulation of myosin phosphorylation: Calcium dependence in two enzyme preparations. Bioelectrochem Bioenergetics, 35, 57–61.

    Article  CAS  Google Scholar 

  36. Markov, M. S., & Pilla, A. A. (1994b). Modulation of cell-free myosin light chain phosphorylation with weak low frequency and static magnetic fields. In A. Frey (Ed.), On the nature of electromagnetic field interactions with biological systems (pp. 127–141). R.G. Landes Co., Austin.

  37. Markov, M. S. (2002) How to go to magnetic field therapy? In P. Kostarakis (Ed.), Proceedings of second international workshop of biological effects of electromagnetic fields (pp. 7–11). Rhodes, Greece, October 2002, ISBN #960-86733-3-X. 5–15.

  38. Markov, M. S. (2004). Magnetic and electromagnetic field therapy: Basic principles of application for pain relief. In Rosch, P. J., & Markov, M. S. (Eds.), Bioelectromagnetic medicine (pp. 251–264). NY: Marcel Dekker.

    Google Scholar 

  39. Markov, M. S. (2004a) Myosin light chain phosphorylation modification depending on magnetic fields I. Theoretical Electromagnetic Biology and Medicine, 23, 55–74.

    Article  CAS  Google Scholar 

  40. Markov, M. S. (2004b). Myosin phosphorylation – a plausible tool for studying biological windows. Ross Adey Memorial Lecture. In P. Kostarakis (Ed.), Proceedings of third international workshop on biological effects of EMF (pp. 1–9). Kos, Greece, October 4–8, ISBN 960-233-151-8.

  41. Markov, M. S., Hazlewood, C. F., & Ericsson, A. D. (2004c). Systemic effect – a plausible explanation of the benefit of magnetic field therapy: A hypothesis. In P. Kostarakis (Ed.), Proceedings of 3rd international workshop on biological effects of EMF (pp. 673–682). Kos, Greece, October 4–8, 2004, ISBN 960-233-151-8.

  42. Markov M. S., Williams C. D., Cameron I. L, Hardman W. E., & Salvatore J. R. (2004d). Can magnetic field inhibit angiogenesis and tumor growth. In Rosch P. J., & Markov M. S. (Eds.), Bioelectromagnetic medicine (pp. 625–636). NY: Marcel Dekker.

    Google Scholar 

  43. Markov, M. (2005). Biological windows: A tribute to Ross Adey. The Environmentalist, 25 (pp. 67–74).

  44. Mir, L. M. (2001). Therapeutic perspectives of in␣vivo cell electropermeabilization. Bioelectrochemistry, 53, 1–10.

    Article  CAS  Google Scholar 

  45. Muehsam, D. J., & Pilla, A. A. (1994). Weak magnetic field modulation of ion dynamics in a potential well: Mechanistic and thermal noise considerations. Bioelectrochem Bioenergetics, 35, 71–79.

    Article  CAS  Google Scholar 

  46. Muehsam, D. J., & Pilla, A. A. (1994). Weak magnetic field modulation of ion dynamics in a potential well: Mechanistic and thermal noise considerations. Bioelectrochem Bioenergetics, 35, 71–79.

    Article  CAS  Google Scholar 

  47. Muehsam, D. S., & Pilla, A. A. (1996). Lorentz approach to static magnetic field effects on bound ion dynamics and binding kinetics: Thermal noise considerations. Bioelectromagnetics, 17, 89–99.

    Article  CAS  Google Scholar 

  48. Nindl, G., Johnson, M. T., Hughes, E. F., & Markov, M. S. (2002). Therapeutic electromagnetic field effects on normal and activated Jurkat cells-International Workshop of Biological effects of Electromagnetic fields. Rhodes, Greece, 7–11 October 2002, (pp. 167–173). ISBN #960-86733-3-X.

  49. Ojingwa, J. C., & Isseroff, R. R. (2003). Electrical stimulation of wound healing. The Journal of Investigative Dermatology, 121, 1–12.

    Article  CAS  Google Scholar 

  50. Pennington, G. M., Danley, D. L., Sumko, M. H., et al. (1993). Pulsed, non-thermal, high frequency electromagnetic energy (Diapulse) in the treatment of grade I and grade II ankle sprains. Military Medicine, 158, 101–104.

    CAS  Google Scholar 

  51. Pilla, A. A. (1972). Electrochemical information and energy transfer in␣vivo. In Proc. 7th IECEC (pp. 761–764). Washington, D.C.: American Chemical Society.

  52. Pilla, A. A. (1974). Electrochemical information transfer at living cell membranes. Annals of the New York Academy of Sciences, 238, 149–170.

    Article  CAS  Google Scholar 

  53. Pilla, A. A., Martin, D. E., Schuett, A. M., et al. (1996). Effect of pulsed radiofrequency therapy on edema from grades I and II ankle sprains: A placebo controlled, randomized, multi-site, double-blind clinical study. Journal of Athletic Training, S31, 53.

    Google Scholar 

  54. Pilla, A. A., Muehsam, D. J., & Markov, M. S. (1997). A dynamical systems/Larmor precession model for weak magnetic field bioeffects: Ion-binding and orientation of bound water molecules. Bioelectrochem Bioenergetics, 43, 239–249.

    Article  CAS  Google Scholar 

  55. Pilla, A. A. (2006). Mechanisms and therapeutic applications of time-varying and static magnetic fields. In F. Barnes & B. Greenebaum (Eds.), Handbook of biological effects of electromagnetic fields (3rd ed.). Boca Raton, Fl: CRC Press.

  56. Rosch, P. J., & Markov, M. S. (2004). Bioelectromagnetic Medicine. NY: Marcel Dekker.

  57. Rushton, D. N. (2002). Electrical stimulation in the treatment of pain. Disability and Rehabilitation, 24, 407–415.

    Article  Google Scholar 

  58. Ryaby, J. T. (1998). Clinical effects of electromagnetic and electric fields on fracture healing. Clin Orthopaedics, 355(suppl), 205–215.

    Article  Google Scholar 

  59. Seaborne, D., Quirion-DeGirardi, C., & Rousseau, M. (1996). The treatment of pressure sores using pulsed electromagnetic energy (PEME). Physiotherapy Canada, 48, 131–137.

    Google Scholar 

  60. Shuvalova, L. A., Ostrovskaya, M. V., Sosunov, E. A., & Lednev, V. V. (1991). Weak magnetic field influence of the speed of calmodulin dependent phosphorylation of myosin in solution. Dokladi Akademii Nauk USSR, 217, 227.

    Google Scholar 

  61. Sluka, K. A., & Walsh, D. (2003). Transcutaneous electrical nerve stimulation: Basic science mechanisms and clinical effectiveness. J Pain, 4, 109–121.

    Article  Google Scholar 

  62. Stiller, M. J., Pak, G. H., Pack, J. L., Thaler, S., Kenny, C., & Jondreau, L. (1992). A portable pulsed electromagnetic field (PEMF) device to enhance healing of recalcitrant venous ulcers: A double-blind, placebo- controlled clinical trial. The British Journal of Dermatology, 127, 147–154.

    Article  CAS  Google Scholar 

  63. Todorov, N. (1982). Magnetotherapy (106 p). Sofia: Meditzina i Physcultura Publishing House.

    Google Scholar 

  64. Vodovnik, L., & Karba, R. (1992). Treatment of chronic wounds by means of electric and electromagnetic fields. Medical & Biological Engineering & Computing, 30, 257–266.

    Article  CAS  Google Scholar 

  65. Williams, C. D., Markov, M. S., Hardman, W. E., & Cameron, I. L. (2001). Therapeutic electromagnetic field effects on angiogenesis and tumor growth. Anticancer Research, 21, (pp. 3887–3892).

    Google Scholar 

  66. Wysocki, A. B. (1996). Wound fluids and the pathogenesis of chronic wounds. J Wound Ostomy Care Nursing, 23, 283–290.

    CAS  Google Scholar 

  67. Zhadin, M. N. (1998). Combined action of static and alternating magnetic fields on ion motion in a macromolecule: Theoretical aspects. Bioelectromagnetics, 19, 279–292.

    Article  CAS  Google Scholar 

  68. Zhadin, M. N., & Fesenko, E. E. (1990). Ionic cyclotron resonance in biomolecules. Biomed Sci, 1, 245–250.

    CAS  Google Scholar 

  69. Zizic, T., Hoffman, P., Holt, D., Hungerford, J., O’Dell, J., Jacobs, M, et al., (1995). The treatment of osteoarthritis of the knee with pulsed electrical stimulation. The Journal of Rheumatology, 22, 1757–1761.

    CAS  Google Scholar 

Download references

Acknowledgment

The author express his deep gratitude to Dr. A.R. Liboff for his kind permission to use figures from his excellent article published in “Bioelectromagnetic Medicine”

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marko S. Markov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Markov, M.S. Pulsed electromagnetic field therapy history, state of the art and future. Environmentalist 27, 465–475 (2007). https://doi.org/10.1007/s10669-007-9128-2

Download citation

Keywords

  • Thermal Noise
  • Chronic Wound
  • Ankle Sprain
  • Myosin Light Chain Phosphorylation
  • Pulse Radiofrequency