Skip to main content
Log in

Production of vermifertilizer from guar gum industrial wastes by using composting earthworm Perionyx sansibaricus (Perrier)

  • Published:
The Environmentalist Aims and scope Submit manuscript

Abstract

Efforts have been made to convert the guar gum industrial waste into a value-added product, by employing a new earthworm species for vermicomposting e.g. Perionyx sansibaricus (Perrier) (Megascolecidae), under laboratory conditions. Industrial lignocellulosic waste was amended with other organic supplements (saw dust and cow dung); and three types of vermibeds were prepared: guar gum industrial waste + cow dung + saw dust in 40: 30: 30 ratio (T1), guar gum industrial waste + cow dung + saw dust in 60: 20: 20 ratio (T2,), and guar gum industrial waste + cow dung + saw dust in 75: 15: 10 ratio (T3). As compared to initial concentrations, vermicomposts exhibited a decrease in organic C content (5.0–11.3%) and C:N ratio (11.1–24.4%) and an increase in total N (18.4–22.8%), available P (39.7–92.4%), and exchangeable K (9.4–19.7%) contents, after 150 days of vermicomposting. A vermicomposting coefficient (VC) was used to compare of vermicomposting with the experimental control (composting). P. sansibaricus exhibited maximum value of mean individual live weight (742.8 ± 21.1 mg), biomass gain (442.94 ± 21.8 mg), growth rate (2.95 ± 0.15 mg day−1), cocoon numbers (96.0 ± 5.1) and reproduction rate (cocoons worm−1 day−1) (0.034 ± 0.001) in T2 treatment. In T3 maximum mortality (30.0 ± 4.01 %) in earthworm population was observed. Overall, T2 vermibed appeared as an ideal substrate to manage guar gum industrial waste effectively. Vermicomposting can be proposed as a low-input basis technology to convert industrial waste into value-added biofertilizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Anderson, J. M., & Ingram, J. S. I. (1993). Soil organic matter and organic carbon. In J. M., Anderson, J. S. I., Ingram (Eds.), Tropical soil biology and fertility (pp. 62–66). Wallingford, UK: CAB Internationals

  • Benitez, E., Saizn, H., Melayar, R., & Nogales, R. (2002). Vermicomposting of a lignocellulosic waste from olive oil industry: A pilot scale study. Waste Management and Research, 20, 134–142

    Article  CAS  Google Scholar 

  • Delgado, M., Bigeriego, M., Walter, I., & Calbo, R. (1995). Use of California red worm in sewage sludge transformation. Turrialba, 45, 33–41

    Google Scholar 

  • Edwards, C. A., Dominguez, J., & Neuhauser, E. F. (1998). Growth and reproduction of Perionyx excavatus (Perr.) (Megascolecidae) as factors in organic waste management. Biology and Fertility of Soils, 27, 155–161

    Article  Google Scholar 

  • Elvira, C., Sampedro, L., Benitez, E., & Nogales, R. (1998). Vermicomposting of sludges from paper mill and dairy industries with Eisenia andrei: A pilot scale study’. Bioresource Technology 63, 205–211

    Article  CAS  Google Scholar 

  • Elvira, C., Sampedro, L., Domingnez, J., & Mato, S. (1997). Vermicomposting of water stable sludge from paper pulp industry with nitrogen rich material. Soil Biology and Biochemistry 29, 759–762

    Article  CAS  Google Scholar 

  • Garg, V. K., & Kaushik, P. (2005). Vermistabilization of textile mill sludge spiked with poultry droppings by an epigeic earthworm Eisenia fetida, Bioresource Technology, 96, 1063–1071

    Article  CAS  Google Scholar 

  • Gratelly, P., Benitez, E., Elvira, C., Polo, A., & Nogales R. (1996). Stabilization of sludge from a diary processing plant using vermicomposting. In C. Rodriguez-Barrueco (Ed.), Fertilizers and environment (pp. 341–343). The Netherlands: Kluwer

  • Gupta, S. K., Tewari, A., Srivastava, R., Murthy, R. C., & Chandra, S. (2005). Potential of Eisenia foetida for sustainable and efficient vermicomposting of fly ash. Water, Air, and Soil Pollution, 163, 293–302

    Article  CAS  Google Scholar 

  • Kale, R. D. (1998) Earthworms: Nature’s gift for utilization of organic wastes In C. A., Edwards (Ed.), Earthworm ecology (pp. 355–373). Ankeny, Lowa St. Lucie Press, New York

  • Kaushik, P., & Garg, V. K. (2004). Dynamics of biological and chemical parameters during vermicomposting of solid textile mill sludge mixed with cow dung and agricultural residues. Bioresource Technology, 94, 203–209

    Article  CAS  Google Scholar 

  • Lee, K. E. (1992). Some trends opportunities in earthworm research or: Darwin’s children. The future of our discipline. Soil Biology and Biochemistry, 24, 1765–1771

    Article  Google Scholar 

  • Lorimor, J., Fulhage, C., Zhang, R., Funk, T., Sheffield, R., Sheppard, C., & Newton, G.L. (2001). Manure management strategies/technologies, White paper on animal agriculture and the environment for national center for manure and animal waste management. MWPS, Ames, IA, 52 p (2001)

  • Maboeta, M. S., & van Rensburg, L. (2003). Vermicomposting of industrially produced woodchips and sewage sludge utilizing Eisenia fetida. Ecotoxicology and Environment Safety, 56, 256–270

    Article  CAS  Google Scholar 

  • Marsh, L., Subler, S., Mishra, S., & Marini, M. (2005). Suitability of aquaculture effluent solid mixed with cardboard as a feedstock for vermicomposting. Bioresource Technology, 96, 413–418

    Article  CAS  Google Scholar 

  • Ndegwa, P. M., Thompson, S. A., & Das, K. C. (2000) Effects of stocking density and feeding rate on vermicomposting of biosolids, Bioresource Technology, 71, 5–12

    Article  CAS  Google Scholar 

  • Nogales, R., Cifuentes, C., & Benitez, E. (2005). Vermicomposting of winery waste: a laboratory study. Journal of Environmental Science and Health B, 40, 659–673

    Google Scholar 

  • Reddy, K. S., & Shantaram, M. V. (2005). Potential of earthworm in composting of sugarcane byproducts. Asian Journal Microbiology and Biotechnology Environmental Science, 7, 483–487

    CAS  Google Scholar 

  • Satchell, J. E. (1967). Lumbricidae. In A. Burger, F. Raw (Ed.), Soil biology (pp. 259–322). London: Academic Press

  • Strearns, S. C. (1992). The evolution of life histories. New York, United States: Oxford University press, pp. 72–90

    Google Scholar 

  • Suthar, S. (2006). Potential utilization of guargum industrial waste in vermicompost production. Bioresource Technology 97, 2474–2477

    CAS  Google Scholar 

  • Suthar, S. (2007a). Vermicomposting potential of Perionyx sansibaricus (Perrier) in different waste Materials. Bioresource Technology, 98, 1231–1237

    Article  CAS  Google Scholar 

  • Suthar, S. (2007b). Nutrient changes and biodynamics of epigeic earthworm Perionyx excavatus (Perrier) during recycling of some agricultural wastes. Bioresource Technology, 98, 1608–1614

    Google Scholar 

  • Vinceslas-Akpa, M., & Loquest, M. (1997). Organic matter transformation in lignocellulosic waste products composted or vermicomposed (Eisenia fetida andrei): Chemical analysis and C13 CPMAS, NMR spectroscopy. Soil Biology and Biochemistry, 29, 751–758

    Article  CAS  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the degtjareff method for determining soil organic matter and prepared modification of the chronic acid titration method. Soil Science 34, 29–38

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to three anonymous reviewers for valuable comments and careful revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendra Suthar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suthar, S. Production of vermifertilizer from guar gum industrial wastes by using composting earthworm Perionyx sansibaricus (Perrier). Environmentalist 27, 329–335 (2007). https://doi.org/10.1007/s10669-007-9032-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10669-007-9032-9

Keywords

Navigation