Skip to main content
Log in

Radical Scavengers Suppress Low Frequency EMF Enhanced Proliferation in Cultured Cells and Stress Effects in Higher Plants

  • Published:
Environmentalist Aims and scope Submit manuscript

Summary

In previous publications, we reported that sinusoidal varying magnetic fields (SVMF) modify the activity and dynamics of the malignancy marker adenosine deaminase, and enhance the proliferation of chick embryo fibroblasts (CEF). While the SVMF examined by us (50, 60 & 100 Hz / 0.06–0.7 mT) were all below kT, they may have the potential of altering chemical processes in which excited radicals are involved.

We tested this hypothesis in two experimental systems: CEF in culture and Spirodela oligorrhiza (Lemnaceae) (a small aquatic plant, commonly known as Duckweed). CEF were exposed to SVMF of 100 Hz/0.7 mT for 24 h. The addition of the exogenous radical scavengers catalase, superoxide dismutase or vitamin E to the cells during exposure significantly suppressed enhancement of cell proliferation caused by the field (by 79, 67 and 82%, respectively, as evaluated by the MTT colorimetric assay). 15N NMR analysis of Duckweed plants fed by 15N-labeled ammonium chloride and exposed to SVMF at 60 and 100 Hz/0.7 mT for 24 h, revealed augmented alanine production. Alanine did not accumulate in the absence of SVMF. The addition of vitamin C, a radical scavenger, reduced alanine production by 82%.

Exposure to SVMF resulted in specific metabolic stress effects in Duckweed plants and enhanced proliferation of CEF. In both cases, it is suggested that free radicals are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SVMF:

sinusoidal varying magnetic fields

CEF:

chick embryo fibroblasts

ADA:

adenosine deaminase

SOD:

superodxide dismutase

References

  • Adair, B.K.: 2000, “Static and Low-Frequency Magnetic Field Affects Health, Risks and Therapies,” Rep. Prog. Phys. 63, 415–454.

    Article  CAS  Google Scholar 

  • Ben-Shooshan, I., Kessel, A., Ben-Tal, N., Cohen-Luria, R., Parola, A.H.: 2002, “On the Regulatory Role of Dipeptidyl Peptidase IV (= CD26 = Adenosine Deaminase Complexing Protein) on Adenosine Deaminase Activity,” Biochim. Biophys. Acta. 1587, 21–30.

    CAS  Google Scholar 

  • Ben-Izhak Monselise, E., Parola, A.H. and Kost, D.: 2003, “Low-Frequency Electromagnetic Fields Induce a Stress Effect upon Higher Plants, as Evident by the Universal Stress Signal, Alanine,” Biochem. Biophys. Res. Commun. 302, 427–434.

    Article  CAS  Google Scholar 

  • Ben-Izhak Monselise, E. and Kost, D.: 1998, “15N-NMR Spectroscopic Study of Ammonium Ion Assimilation by Spirodela Oligorrhiza Lemnaceae,” as affected by light and carbon supply in green and etiolated plants. IsraeI J. Plant Sci. 46, 255–264.

    Google Scholar 

  • Blank, M. and Goodman, R.: 2002, “Insights into Electromagnetic Interaction Mechanisms,” J. Cell. Physiol. 192, 16–22.

    Google Scholar 

  • Brandes, R.P. and Kreuzer, J.: 2005, “Vascular NADPH Oxidases: Molecular Mechanisms of Activation,” Cardiovasc. Res. 65, 16–27.

    Article  CAS  Google Scholar 

  • Cheeseman, K.H. and Slater, T.F.: 1993, “An Introduction to Free Radical Biochemistry,” Br. Med. Bull. 49, 481–493.

    CAS  Google Scholar 

  • Cohen, S.G., Parola, A.H. and Parsons, G.H.: 1973, “Photoreduction by Amines,” Chem. Rev. 73, 141–161.

    Article  CAS  Google Scholar 

  • Duchen, M.R.: 2004, “Mitochondria in Health and Disease: Perspectives on a New Mitochondrial Biology,” Molec. Aspects Med. 25, 365–451.

    CAS  Google Scholar 

  • Antov, Y., Barbul, A. and Korenstein, R.: 2004, “Electroendocytosis: Stimulation of Adsorptive and Fluid-Phase Uptake by Pulsed Low Electric Fields.” Exp. Cell Res. 297, 348–62.

    Article  CAS  Google Scholar 

  • Ferrari, R., Merli, E., Cicchitelli, G., Mele, D., Fucili, A. and Ceconi, C.: 2004, “Therapeutic Effects of L-Carnitine and Propionyl-L-Carnitine on Cardiovascular Diseases: A Review,” Ann. N. Y. Acad. Sci. 1033, 79–91.

    Article  CAS  Google Scholar 

  • Grissom, C.B.: 1995, “Magnetic Field Effects in Biology: A Survey of Possible Mechanisms with Emphasis on Radical-Pair Recombination,” Chem. Rev. 95, 3–24.

    Article  CAS  Google Scholar 

  • Gutzeit, H.O.: 2001, “Biological Effects of ELF-EMF Enhanced Stress Response: New Insights and New Question,” Electro- Magnetobiol. 20, 15–26.

    CAS  Google Scholar 

  • Guyton, K.Z. and Kensler, T.W.: 1993, “Oxidative Mechanisms in Carcinogenesis,” Br. Med. Bull. 49, 523–544.

    CAS  Google Scholar 

  • Haddad, J.J.: 2004, “On the Antioxidant Mechanisms of Bcl-2: A Retrospective of NF-κ B Signaling and Oxidative Stress,” Biochem. Biophys. Res. Commun. 322, 355–363.

    Article  CAS  Google Scholar 

  • Hileman, B.: 1993, “Health Effects of Electromagnetic Fields,” Chem. Eng. News 71, 15–29.

    Google Scholar 

  • Jeong, J.H., Kim, J.S., Lee, B.C., Min, Y.S., Kim, D.S., Ryu, J.S., Soh, K.S., Seo, K.M. and Sohn, U.D.: 2005, “Influence of Exposure to Electromagnetic Field on the Cardiovascular System,” Auton Autacoid Pharmacol. 25, 17–23.

    CAS  Google Scholar 

  • Katsir, G. and Parola, A.H.: 1998, “Enhanced Proliferation Caused by a Low Frequency Weak Magnetic Field in Chick Embryo Fibroblasts is Suppressed by Radical Scavengers,” Biochm. Biophys. Res. Commu. 252, 753–756.

    CAS  Google Scholar 

  • Katsir, G., Baram, S.C. and Parola, A.H.: 1998, “Effect of Sinusoidally Varying Magnetic Fields on Cell Proliferation and Adenosine Deaminase Specific Activity,” Bioelectromagnetics 19, 46–52.

    Article  CAS  Google Scholar 

  • Koppitz, H., Dewender, M., Ostendorp, W. and Schmieder, K.: 2004, “Amino Acids as Indicators of Physiological Stress in Common Reed Phragmites Australis Affected by an Extreme Flood,” Aquatic Botany 79, 277–294.

    Article  CAS  Google Scholar 

  • Kleinerman, R.A., Linet, M.S., Hatch, E.E., Tarone, R.E., Black, P.M., Selker, R.G., Shapiro, W.R., Fine, H.A. and Inskip, P.D.: 2005, “Self-Reported Electrical Appliance Use and Risk of Adult Brain Tumors,” Am. J. Epidemiol. 161, 136–146.

    Article  Google Scholar 

  • Lin, H., Opler, M., Blank, M. and Goodman, R.: 1997, “Electromagnetic Field Exposure Induces Rapid, Transitory Heat Shock Factor Activation in Human Cells,” J. Cell. Biochem. 66, 482–488.

    Article  CAS  Google Scholar 

  • Lacy-Hulbert, A., Metcalfe, J.C. and Hesketh, R. 1998, “Biological Responses to Electromagnetic Fields,” FASEB J. 12, 395–420.

    CAS  Google Scholar 

  • Liboff, A.R. and Jenrow, K.A.: 2000, “Cell Sensitivity to Magnetic Fields,” Electro- Magnetobiol. 19, 223–236.

    CAS  Google Scholar 

  • Lander, H.M.: 1997, “An Essential Role for Free Radicals and Derived Species in Signal Transduction,” FASEB J. 11, 118–124.

    CAS  Google Scholar 

  • Liberto, C.M., Albrecht, P.J., Herx, L.M., Yong, V.W. and Levison, S.W.: 2004, “Pro-Regenerative Properties of Cytokine-Activated Astrocytes,” J. Neurochem. 89, 1092–1100.

    Article  CAS  Google Scholar 

  • Markov, M.S.: 1994, “Biophysical Estimation of the Environmental Importance of Electromagnetic Fields,” Rev. Environ. Health 10, 75–83.

    CAS  Google Scholar 

  • Mohtat, N., Cozens, F.L., Hancock-Chen, T., Scaiano, J.C., McLean, J. and Kim, J.: 1998, “Magnetic Field Effects on the Behavior of Radicals in Protein and DNA Environments,” Photochem. Photobiol. 67, 111–118.

    Article  CAS  Google Scholar 

  • Mayr, M., Metzler, B., Chung, YL., McGregor, E., Mayr, U., Troy, H., Hu, Y., Leitges, M., Pachinger, O., Griffiths, JR., Dunn, M.J. and Xu, Q.: 2004, “Ischemic Preconditioning Exaggerates Cardiac Damage in PKC-δ Null Mice,” Am. J. Physiol. Heart Circ. Physiol. 287, H946–H956.

    CAS  Google Scholar 

  • Mosmann, T.: 1983, “Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays,” J. Immunol. Methods 65, 55–63.

    Article  CAS  Google Scholar 

  • Minotti, G., Menna, P., Salvatorelli, E., Cairo, G. and Gianni, L.: 2004, “Anthracyclines: Molecular Advances and Pharmacologic Developments in Antitumor Activity and Cardiotoxicity,” Pharmacol. Rev. 56, 185–229.

    Article  CAS  Google Scholar 

  • Mahrour, N., Pologea-Moraru, R., Moisescu, M.G., Orlowski, S., Leveque, P. and Mir, L.M.: 2005, “In vitro Increase of the Fluid-Phase Endocytosis Induced by Pulsed Radiofrequency Electromagnetic Fields: Importance of the Electric Field Component,” Biochim. Biophys. Acta. 1668, 126–37.

    CAS  Google Scholar 

  • Nissim, I.T., Hardy, M., Pleasure, J., Nisim, I.L. and States, B.A.: 1992, “A Mechanism of Glycine and Alanine Cytoprotective Action: Stimulaion of Stress-Induced HSP70 mRNA,” Kidney Int. 42, 775–782.

    CAS  Google Scholar 

  • Parola, A.H. and Markel, A.: 1994, “Biological Effects of Electric and Magnetic Fields,” in: D.O. Carpenter and S. Ayrapetyan (eds.), “Electric and Magnetic Fields and Carcinogenesis,” Academic Press, Vol. 2, pp. 177–197.

  • Pipkin, J.L., Hinson, W.G., Youngm, J.F., Rowland, K.L., Shaddock, P.J., Tolleson, W.H., Duffy, P.H. and Casciano, D.A.: 1999, “Induction of Stress Proteins by Electromagnetic Fields in Cultured HL-60 Cells,” Bioelectromagnetics 20, 347–357.

    Article  CAS  Google Scholar 

  • Parola, A.H., Caiolfa, V.R., Ben-Shooshan, I. and Cohen-Luria, R.: 2000, “The Regulatory Role of Adenosine Deaminase Complexing Protein (Dipeptidyl Peptidase IV = CD26) on the Malignancy Marker Adenosine Deaminase: Effect of Membrane Cholesterol and Phase—Transition,” Drug Develop. Res. 50, 537–549.

    CAS  Google Scholar 

  • Porat, N., Gill, D. and Parola, A.H.: 1988, “Adenosine Deaminase in Cell Transformation. Biophysical Manifestation of Membrane Dynamics,” J. Biol. Chem. 263, 14608–14611.

    CAS  Google Scholar 

  • Parola, A.H., Porat, N. and Kiesow, L.A.: 1993, “Chicken Embryo Fibroblasts Exposed to Weak, Time-Varying Magnetic Fields Share Cell Proliferation, Adenosine Deaminase Activity, and Membrane Characteristics of Transformed Cells,” Bioelectromagnetics 14, 215–228.

    CAS  Google Scholar 

  • Portaccio, M., De Luca, P., Durante, D., Grano, V., Rossi, S., Bencivenga, U., Lepore, M. and Mita, D.G.: 2005, “Modulation of the Catalytic Activity of Free and Immobilized Peroxidase by Extremely Low Frequency Electromagnetic Fields: Dependence on Frequency,” Bioelectromagnetics 26, 145–152.

    Article  CAS  Google Scholar 

  • Ramundo-Orlando, A., Serafino, A., Schiavo, R., Liberti, M. and d'Inzeo, G.: 2005, “Permeability Changes of Connexin32 Hemi Channels Reconstituted in Liposomes Induced by Extremely Low Frequency, Low Amplitude Magnetic Fields,” Biochim. Biophys. Acta. 1668, 33–40.

    CAS  Google Scholar 

  • Scaiano, J.C., Cozens, F.L. and McLean, J.: 1994, “Model of the Rationalization of Magnetic Field Effects in vivo. Application of Radical-Pair Mechanism to Biological Systems,” Photochem. Photobiol. 59, 585–589.

    CAS  Google Scholar 

  • Scaiano, J.C., Mohtat, N., Cozens, F.L., McLean, J. and Thansandote, A.: 1994, “Application of the Radical Pair Mechanism to Free Radicals in Organized Systems: Can the Effects of 60 Hz be Predicted from Studies under Static Fields?” Bioelectromagnetics 15, 549–554.

    CAS  Google Scholar 

  • Saxena, A., Jacobson, J., Yamanashi, W., Scherlag, B., Lamberth, J. and Saxena, B.: 2003, “A Hypothetical Mathematical Construct Explaining the Mechanism of Biological Amplification in an Experimental Model Utilizing PicoTesla (PT) Electromagnetic Fields,” Med. Hypotheses 60, 821–39.

    Article  Google Scholar 

  • Turro, N.J. and Weed, G.C.: 1983, “Micellar Systems as Supercages for Reactions of Geminate Radical Pairs. Magnetic effects,” J. Am. Chem. Soc. 105, 1861–1868.

    CAS  Google Scholar 

  • Turro, N.J., Buchachenko, A.L. and Tarasov, V.F.: 1995, “How Spin Stereochemistry Severely Complicates the Formation of a Carbon-Carbon Bond Between two Reactive Radicals in a Supercage.” Acc. Chem. Res. 28, 69–80.

    Article  CAS  Google Scholar 

  • Turro, N.J.: 1996, “Supramolecular Photochemistry,” A paradigm for the 1990's? J. Photochem. Photobiol. A: Chem. 100, 53–56.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham H. Parola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parola, A.H., Kost, D., Katsir, G. et al. Radical Scavengers Suppress Low Frequency EMF Enhanced Proliferation in Cultured Cells and Stress Effects in Higher Plants. Environmentalist 25, 103–111 (2005). https://doi.org/10.1007/s10669-005-4272-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10669-005-4272-z

Keywords

Navigation