Skip to main content
Log in

Epoxidation of Calophyllum inophyllum oil fatty acid methyl esters as a potential base-stock for green cutting fluid

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Calophyllum inophyllum oil (CIO) is a non-edible vegetable oil that has poor oxidative and thermal stability. These limitations can be ameliorated by certain chemical modifications. In the present study, CIO is chemically modified by a two-stage transesterification process using methanol followed by epoxidation. The present study attempts to develop a green-cutting fluid using multistage chemically modified CIO. The fatty acid profile of CIO is evaluated by the Gas chromatography- Mass spectroscopy method and the chemical modification of CIO is confirmed using Fourier Transform Infrared spectroscopy. The lubricant properties such as tribological, thermal, and physical properties, oxidation stability, and chemical properties of CIO and modified CIO (MCIO), are evaluated and compared initially as per ASTM, AOCS, and Indian Standards, respectively. Then the CIO and MCIO-based cutting fluids are formulated based on the emulsion stability test results conducted as per ASTM standards. The kinematic viscosity, tribological properties, and corrosion stability of the vegetable oil-based cutting fluids are then evaluated and compared with that of the commercial cutting fluids such as Servocut and Quakercut as per ASTM standards. The performance evaluation of the vegetable oil-based cutting fluid with commercial cutting fluids is performed using a pin-on-disc apparatus with the help of an L16 orthogonal array. The experimental results indicated that the MCIO has superior oxidative stability and a better viscosity index compared to CIO. The modification of CIO has shown a slight improvement of 3 °C in its pour point. Whereas, the TGA curve indicated that the MCIO is not even completely degraded at 800 °C compared to CIO, which completely degraded by 552 °C. The final base fluid, EMCIO (emulsified MCIO) has shown a very low coefficient of friction (COF) value of 0.023 compared to commercial cutting fluids. From the Taguchi and ANOVA analysis for performance evaluation using pin on disc, it was observed that cutting fluids used is the most influencing parameter for COF (53.89%), weight loss (24.02%)., and surface roughness (46.86%). The present study has developed a green cutting fluid with multistage chemically modified CIO with better shelf life, superior oxidation stability, and better viscosity index that can replace commercial cutting fluids and the effect of cutting fluid used alone and with other parameters such as load and speed on the COF, weight loss, and surface roughness has also been investigated, which makes the work more novel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Abdalla, H. S., Baines, W., McIntyre, G., & Slade, C. (2007). Development of novel sustainable neat-oil metal working fluids for stainless steel and titanium alloy machining. Part 1. Formulation development. The International Journal of Advanced Manufacturing Technology, 34(1–2), 21–33.

    Article  Google Scholar 

  • Adhvaryu, A., & Erhan, S. Z. (2002). Epoxidized soybean oil as a potential source of high-temperature lubricants. Industrial Crops and Products, 15(3), 247–254.

    Article  CAS  Google Scholar 

  • Adhvaryu, A., Erhan, S. Z., & Perez, J. M. (2004). Tribological studies of thermally and chemically modified vegetable oils for use as environmentally friendly lubricants. Wear, 257(3–4), 359–367.

    Article  CAS  Google Scholar 

  • Afifah, A. N., Syahrullail, S., Azlee, N. I. W., & Rohah, A. M. (2021). Synthesis and tribological studies of epoxidized palm stearin methyl ester as a green lubricant. Journal of Cleaner Production, 280, 124320.

    Article  CAS  Google Scholar 

  • Afifah, A. N., Syahrullail, S., Azlee, N. I. W., Sidik, N. A. C., Yahya, W. J., & Abd Rahim, E. (2019). Biolubricant production from palm stearin through enzymatic transesterification method. Biochemical Engineering Journal, 148, 178–184.

    Article  CAS  Google Scholar 

  • Angulo, B., Fraile, J. M., Gil, L., & Herrerías, C. I. (2018). Bio-lubricants production from fish oil residue by transesterification with trimethylolpropane. Journal of Cleaner Production, 202, 81–87.

    Article  CAS  Google Scholar 

  • Arita, S., Komariah, L. N., Andalia, W., Hadiah, F., & Ramayanti, C. (2023). Taguchi experiment design for DES K2CO3-glycerol performance in RBDPO transesterification. Emerging Science Journal, 7(3), 917–927.

    Article  Google Scholar 

  • Arumugam, S., Sriram, G., & Subadhra, L. (2012). Synthesis, chemical modification and tribological evaluation of plant oil as bio-degradable low temperature lubricant. Procedia Engineering, 38, 1508–1517.

    Article  CAS  Google Scholar 

  • Atabani, A. E., & da Silva César, A. (2014). Calophyllum inophyllum L.-A prospective non-edible biodiesel feedstock. Study of biodiesel production, properties, fatty acid composition, blending and engine performance. Renewable and Sustainable Energy Reviews, 37, 644–655.

    Article  CAS  Google Scholar 

  • Attia, N. K., El-Mekkawi, S. A., Elardy, O. A., & Abdelkader, E. A. (2020). Chemical and rheological assessment of produced biolubricants from different vegetable oils. Fuel, 271, 117578.

    Article  CAS  Google Scholar 

  • Azahar, W. N. A. W., Jaya, R. P., Hainin, M. R., Bujang, M., & Ngadi, N. (2016). Chemical modification of waste cooking oil to improve the physical and rheological properties of asphalt binder. Construction and Building Materials, 126, 218–226.

    Article  CAS  Google Scholar 

  • Bashiri, S., Ghobadian, B., Soufi, M. D., & Gorjian, S. (2021). Chemical modification of sunflower waste cooking oil for biolubricant production through epoxidation reaction. Materials Science for Energy Technologies, 4, 119–127.

    Article  CAS  Google Scholar 

  • Bennett, E. O. (1983). Water based cutting fluids and human health. Tribology International, 16(3), 133–136.

    Article  Google Scholar 

  • Bilal, S., Nuhu, M., & Kasim, S. A. (2013). Production of biolubricant from Jatropha curcas seed oil. Journal of Chemical Engineering and Materials Science, 4(6), 72–79.

    Article  Google Scholar 

  • Birova, A., Pavlovičová, A., & Cvenroš, J. (2002). Lubricating oils based on chemically modified vegetable oils. Journal of Synthetic Lubrication, 18(4), 291–299.

    Article  CAS  Google Scholar 

  • Borugadda, V. B., & Goud, V. V. (2014). Epoxidation of castor oil fatty acid methyl esters (COFAME) as a lubricant base stock using heterogeneous ion-exchange resin (IR-120) as a catalyst. Energy Procedia, 54, 75–84.

    Article  CAS  Google Scholar 

  • Borugadda, V. B., & Goud, V. V. (2016). Improved thermo-oxidative stability of structurally modified waste cooking oil methyl esters for bio-lubricant application. Journal of Cleaner Production, 112, 4515–4524.

    Article  CAS  Google Scholar 

  • Cai, S., Zhou, X., Chen, J., Yu, H., & Zhou, C. (2012). Transesterification reaction reduce viscosity of vegetable insulating oil. In 2012 International Conference on High Voltage Engineering and Application (pp. 648–650). IEEE.

  • Chauhan, P. S. (2013). Epoxidation in karanja oil for biolubricant applications. International Journal of Pharmaceutical and Biological Science Archive, 1(1), 61–70.

    Google Scholar 

  • Chen, S., Wu, T., Fang, Y., & Zhao, C. (2022). Synthesis of T-Type low-viscosity hydrocarbon bio-lubricant from fatty acid methyl esters and coconut oil. Renewable Energy, 186, 280–287.

    Article  CAS  Google Scholar 

  • do Valle, C. P., Rodrigues, J. S., Fechine, L. M. U. D., Cunha, A. P., Malveira, J. Q., Luna, F. M. T., & Ricardo, N. M. P. S. (2018). Chemical modification of Tilapia oil for biolubricant applications. Journal of Cleaner Production, 191, 158–166.

  • Edla, S., Krishna, A., Karthik, G. V. S., Arif, M. M., & Rani, S. (2021). Potential use of transesterified vegetable oil blends as base stocks for metalworking fluids and cutting forces prediction using machine learning tool. Biomass Conversion and Biorefinery, 1–12.

  • Edla, S., Thampi, A. D., Prasannakumar, P., & Rani, S. (2022). Evaluation of physicochemical, tribological and oxidative stability properties of chemically modified rice bran and karanja oils as viable lubricant base stocks for industrial applications. Tribology International, 173, 107631.

    Article  CAS  Google Scholar 

  • Encinar, J. M., González, J. F., & Pardal, A. (2012). Transesterification of castor oil under ultrasonic irradiation conditions. Preliminary Results. Fuel Processing Technology, 103, 9–15.

    Article  CAS  Google Scholar 

  • Encinar, J. M., Nogales, S., & González, J. F. (2020). Biodiesel and biolubricant production from different vegetable oils through transesterification. Engineering Reports, 2(12), e12190.

    Article  CAS  Google Scholar 

  • Erhan, S. Z., Sharma, B. K., & Perez, J. M. (2006). Oxidation and low temperature stability of vegetable oil-based lubricants. Industrial Crops and Products, 24(3), 292–299.

    Article  CAS  Google Scholar 

  • Farfan-Cabrera, L. I., Gallardo-Hernández, E. A., Gómez-Guarneros, M., Pérez-González, J., & Godínez-Salcedo, J. G. (2020). Alteration of lubricity of Jatropha oil used as bio-lubricant for engines due to thermal ageing. Renewable Energy, 149, 1197–1204.

    Article  CAS  Google Scholar 

  • Farfan-Cabrera, L. I., Gallardo-Hernández, E. A., Pérez-González, J., Marín-Santibáñez, B. M., & Lewis, R. (2019). Effects of Jatropha lubricant thermo-oxidation on the tribological behaviour of engine cylinder liners as measured by a reciprocating friction test. Wear, 426, 910–918.

    Article  Google Scholar 

  • Fox, N. J., & Stachowiak, G. W. (2007). Vegetable oil-based lubricants—a review of oxidation. Tribology International, 40(7), 1035–1046.

    Article  CAS  Google Scholar 

  • Ghazi, T. I., Gunam Resul, M. F. M., & Idris, A. (2010). Production of an improved biobased lubricant from Jatropha curcas as renewable source. In Proceedings of Third International Symposium on Energy from Biomass and Waste, by CISA, Environmental Sanitary Engineering Centre (Venice) Italy.

  • Ghodrati, M., Mousavi-Kamazani, M., & Zinatloo-Ajabshir, S. (2020). Zn3V3O8 nanostructures: Facile hydrothermal/solvothermal synthesis, characterization, and electrochemical hydrogen storage. Ceramics International, 46(18), 28894–28902.

    Article  CAS  Google Scholar 

  • Habibullah, M., Masjuki, H. H., Kalam, M. A., Gulzar, M., Arslan, A., & Zahid, R. (2015). Tribological characteristics of Calophyllum inophyllum–based TMP (trimethylolpropane) ester as energy-saving and biodegradable lubricant. Tribology Transactions, 58(6), 1002–1011.

    Article  CAS  Google Scholar 

  • Hamzeh, S., Mahmoudi-Moghaddam, H., Zinatloo-Ajabshir, S., Amiri, M., & Nasab, S. A. R. (2024). Eco-friendly synthesis of mesoporous praseodymium oxide nanoparticles for highly efficient electrochemical sensing of carmoisine in food samples. Food Chemistry, 433, 137363.

    Article  CAS  Google Scholar 

  • Hawa, A., Salaemae, P., Abdulmatin, A., Ongwuttiwat, K., & Prachasearee, W. (2023). Properties of palm oil ash geopolymer containing alumina powder and field para rubber latex. Civil Engineering Journal, 9(05), 1271.

    Article  Google Scholar 

  • Hernández-Cruz, M. C., Meza-Gordillo, R., Domínguez, Z., Rosales-Quintero, A., Abud-Archila, M., Ayora-Talavera, T., & Villalobos-Maldonado, J. J. (2021). Optimization and characterization of in situ epoxidation of chicken fat with peracetic acid. Fuel, 285, 119127.

    Article  Google Scholar 

  • Hwang, H.-S., & Erhan, S. Z. (2001). Modification of epoxidized soybean oil for lubricant formulations with improved oxidative stability and low pour point. Journal of the American Oil Chemists’ Society, 78(12), 1179–1184.

    Article  CAS  Google Scholar 

  • Janković, M. R., Govedarica, O. M., & Sinadinović-Fišer, S. V. (2020). The epoxidation of linseed oil with in situ formed peracetic acid: A model with included influence of the oil fatty acid composition. Industrial Crops and Products, 143, 111881.

    Article  Google Scholar 

  • Kamil, R. N. M., Yusup, S., & Rashid, U. (2011). Optimization of polyol ester production by transesterification of Jatropha-based methyl ester with trimethylolpropane using Taguchi design of experiment. Fuel, 90(6), 2343–2345.

    Article  CAS  Google Scholar 

  • Lawal, S. A. (2013). A review of application of vegetable oil-based cutting fluids in machining non- ferrous metals. Indian Journal of Science and Technology, 6(1), 3951–3956.

    Article  CAS  Google Scholar 

  • Lovell, M., Higgs, C. F., Deshmukh, P., & Mobley, A. (2006). Increasing formability in sheet metal stamping operations using environmentally friendly lubricants. Journal of Materials Processing Technology, 177(1–3), 87–90.

    Article  CAS  Google Scholar 

  • Madankar, C. S., Pradhan, S., & Naik, S. N. (2013). Parametric study of reactive extraction of castor seed (Ricinus communis L.) for methyl ester production and its potential use as bio lubricant. Industrial Crops and Products, 43, 283–290.

    Article  CAS  Google Scholar 

  • Makkar, H. P. S., Becker, K., Sporer, F., & Wink, M. (1997). Studies on nutritive potential and toxic constituents of different provenances of Jatropha curcas. Journal of Agricultural and Food Chemistry, 45(8), 3152–3157.

    Article  CAS  Google Scholar 

  • Mang, T., & Dresel, W. (2007). Lubricants and lubrication. John Wiley and Sons.

    Google Scholar 

  • Marques, J. P. C., Rios, Í. C., Parente, E. J. S., Jr., Quintella, S. A., Luna, F. M. T., & Cavalcante, C. L., Jr. (2020). Synthesis and characterization of potential bio-based lubricant basestocks via epoxidation process. Journal of the American Oil Chemists’ Society, 97(4), 437–446.

    Article  CAS  Google Scholar 

  • Mobarak, H. M., Mohamad, E. N., Masjuki, H. H., Kalam, M. A., Al Mahmud, K. A. H., Habibullah, M., & Ashraful, A. M. (2014). The prospects of biolubricants as alternatives in automotive applications. Renewable and Sustainable Energy Reviews, 33, 34–43.

    Article  CAS  Google Scholar 

  • Mohanraj, T., & Radhika, N. (2021). Biolubricants. In Tribology and Sustainability (pp. 143–161). CRC Press.

  • Nogales-Delgado, S., Encinar, J. M., & Cortés, Á. G. (2021). High oleic safflower oil as a feedstock for stable biodiesel and biolubricant production. Industrial Crops and Products, 170, 113701.

    Article  CAS  Google Scholar 

  • Nor, N. M., Derawi, D., & Salimon, J. (2017). Chemical modification of epoxidized palm oil for biolubricant application. Malaysian Journal of Analytical Sciences, 21(6), 1423–1431.

    Google Scholar 

  • Ogunniyi, D. S. (2006). Castor oil: A vital industrial raw material. Bioresource Technology, 97(9), 1086–1091.

    Article  CAS  Google Scholar 

  • Oh, J., Yang, S., Kim, C., Choi, I., Kim, J. H., & Lee, H. (2013). Synthesis of biolubricants using sulfated zirconia catalysts. Applied Catalysis a: General, 455, 164–171.

    Article  CAS  Google Scholar 

  • Pandey, R. K., Wood, R. J. K., & Bijwe, J. (2017). Green tribology. Surface Topography: Metrology and Properties. IOP Publishing.

  • Pranav, P., Sneha, E., & Rani, S. (2021). Vegetable oil-based cutting fluids and its behavioral characteristics in machining processes : A review. Industrial Lubrication and Tribology. https://doi.org/10.1108/ILT-12-2020-0482

    Article  Google Scholar 

  • Prasannakumar, P., Edla, S., Thampi, A. D., Arif, M., & Santhakumari, R. (2022). A comparative study on the lubricant properties of chemically modified Calophyllum inophyllum oils for bio-lubricant applications. Journal of Cleaner Production, 339, 130733.

    Article  CAS  Google Scholar 

  • Prasannakumar, P., Sankarannair, S., Bose, C., Santhakumari, R., & Jyothi, S. N. (2023). Influence of techniques on synthesizing cashew nut shell oil as a prospective biolubricant on its physicochemical, tribological, and thermal behaviors. Journal of Cleaner Production, 401, 136717.

    Article  CAS  Google Scholar 

  • Rani, S. (2017). The evaluation of lubricant properties and environmental effect of bio-lubricant developed from rice bran oil. International Journal of Surface Science and Engineering, 11(5), 403–417.

    Article  CAS  Google Scholar 

  • Resul, M. F. M. G., Ghazi, T. I. M., & Idris, A. (2012). Kinetic study of jatropha biolubricant from transesterification of jatropha curcas oil with trimethylolpropane: Effects of temperature. Industrial Crops and Products, 38, 87–92.

    Article  Google Scholar 

  • Rizvi, S. Q. A. (2009). A Comprehensive Review of Lubricant Chemistry. Technology, Selection, and Design, 100–112.

  • Rudnick, L. R. (2020). Synthetics, mineral oils, and bio-based lubricants: Chemistry and technology. CRC Press.

    Book  Google Scholar 

  • Sabarinath, S., Prabha Rajeev, S., Rajendra Kumar, P. K., & Prabhakaran Nair, K. (2020). Development of fully formulated eco-friendly nanolubricant from sesame oil. Applied Nanoscience, 10(2), 577–586.

    Article  CAS  Google Scholar 

  • Sabarinath, S., Sreenidhi, P. R., Rajendrakumar, P. K., Nair, K. P., Padil, V. V. T., Koshy, C. P., & Pranav, P. (2023). experimental investigations of sesame oil-based nano-lubricant in four-stroke SI engine. Transactions of the Indian Institute of Metals, 76(9), 2581–2585.

    Article  CAS  Google Scholar 

  • Sankaran Nair, S., Prabhakaran Nair, K., & Rajendrakumar, P. K. (2018). Micro and nanoparticles blended sesame oil bio-lubricant: Study of its tribological and rheological properties. Micro and Nano Letters, 13(12), 1743–1746.

    Article  Google Scholar 

  • Satyanarayana, M., & Muraleedharan, C. (2011). Comparative studies of biodiesel production from rubber seed oil, coconut oil, and palm oil including thermogravimetric analysis. Energy Sources, Part a: Recovery, Utilization, and Environmental Effects, 33(10), 925–937.

    Article  CAS  Google Scholar 

  • Schneider, M. P. (2006). Plant-oil-based lubricants and hydraulic fluids. Journal of the Science of Food and Agriculture, 86(12), 1769–1780.

    Article  CAS  Google Scholar 

  • Siler-Marinkovic, S., & Tomasevic, A. (1998). Transesterification of sunflower oil in situ. Fuel, 77(12), 1389–1391.

    Article  CAS  Google Scholar 

  • Sneha, E., Akhil, R. B., Krishna, A., Rani, S., & Kumar, S. A. (2020). Formulation of bio-lubricant based on modified rice bran oil with stearic acid as an anti-wear additive. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 1350650120977381.

  • Sukri, A. S., Saripuddin, M., & Talanipa, R. (2023). Potential erosion in mining, oil palm plantations, and watersheds reforestation areas. Civil Engineering Journal, 9(9), 2193–2204.

    Article  Google Scholar 

  • Thampi, A. D., John, A. R., Rani, S., & Arif, M. M. (2020a). Chemical modification and tribological evaluation of pure rice Bran oil as base stocks for biodegradable lubricants. Journal of The Institution of Engineers (India): Series E, 1–6.

  • Thampi, A. D., John, A. R., Arif, M. M., & Rani, S. (2020b). Evaluation of the tribological properties and oxidative stability of epoxidized and ring opened products of pure rice bran oil. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 1350650120950535.

  • Wagner, H., Luther, R., & Mang, T. (2001). Lubricant base fluids based on renewable raw materials: Their catalytic manufacture and modification. Applied Catalysis a: General, 221(1–2), 429–442.

    Article  CAS  Google Scholar 

  • Wu, X., Zhang, X., Yang, S., Chen, H., & Wang, D. (2000). The study of epoxidized rapeseed oil used as a potential biodegradable lubricant. Journal of the American Oil Chemists’ Society, 77(5), 561–563.

    Article  CAS  Google Scholar 

  • Xu, J., Kong, L., Deng, L., Mazza, G., Wang, F., Baeyens, J., & Nie, K. (2021). The conversion of linoleic acid into hydroxytetrahydrofuran-structured bio-lubricant. Journal of Environmental Management, 291, 112692.

    Article  CAS  Google Scholar 

  • Yunus, R., Fakhrul I-Razi, A., Ooi, T. L., Iyuke, S. E., & Idris, A. (2003). Preparation and characterization of trimethylolpropane esters from palm kernel oil methyl esters. Journal of Oil Palm Research, 15(2), 42–49.

    CAS  Google Scholar 

  • Zaid, M., Singh, Y., Kumar, A., & Gupta, S. (2020). Development of the Calophyllum inophyllum based biolubricant and their tribological analysis at different conditions. Materials Today: Proceedings, 26, 2582–2585.

    CAS  Google Scholar 

  • Zainal, N. A., Zulkifli, N. W. M., Gulzar, M., & Masjuki, H. H. (2018). A review on the chemistry, production, and technological potential of bio-based lubricants. Renewable and Sustainable Energy Reviews, 82, 80–102.

    Article  CAS  Google Scholar 

  • Zinatloo-Ajabshir, S., Esfahani, M. H., Marjerrison, C. A., Greedan, J., & Behzad, M. (2023). Enhanced electrochemical hydrogen storage performance of lanthanum zirconium oxide ceramic microstructures synthesized by a simple approach. Ceramics International, 49(23), 37415–37422.

    Article  CAS  Google Scholar 

  • Zinatloo-Ajabshir, S., Mahmoudi-Moghaddam, H., Amiri, M., & Akbari Javar, H. (2024a). A green and simple procedure to synthesize dysprosium cerate plate-like nanostructures and their application in the electrochemical sensing of mesalazine. Journal of Materials Science: Materials in Electronics, 35(7), 500.

    CAS  Google Scholar 

  • Zinatloo-Ajabshir, S., Morassaei, M. S., & Salavati-Niasari, M. (2019). Eco-friendly synthesis of Nd2Sn2O7–based nanostructure materials using grape juice as green fuel as photocatalyst for the degradation of erythrosine. Composites Part b: Engineering, 167, 643–653.

    Article  CAS  Google Scholar 

  • Zinatloo-Ajabshir, S., Rakhshani, S., Mehrabadi, Z., Farsadrooh, M., Feizi-Dehnayebi, M., Rakhshani, S., et al. (2024b). Novel rod-like [Cu (phen) 2 (OAc)]·PF6 complex for high-performance visible-light-driven photocatalytic degradation of hazardous organic dyes: DFT approach, Hirshfeld and fingerprint plot analysis. Journal of Environmental Management, 350, 119545.

    Article  CAS  Google Scholar 

  • Zinatloo-Ajabshir, S., & Salavati-Niasari, M. (2019). Preparation of magnetically retrievable CoFe2O4@ SiO2@ Dy2Ce2O7 nanocomposites as novel photocatalyst for highly efficient degradation of organic contaminants. Composites Part b: Engineering, 174, 106930.

    Article  CAS  Google Scholar 

  • Zinatloo-Ajabshir, S., Salehi, Z., & Salavati-Niasari, M. (2018). Green synthesis and characterization of Dy2Ce2O7 nanostructures using Ananas comosus with high visible-light photocatalytic activity of organic contaminants. Journal of Alloys and Compounds, 763, 314–321.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Central Laboratory for Instrumentation and Facilitation (CLIF), University of Kerala- Kariavattom Campus, Thiruvananthapuram, Kerala, India for carrying out FTIR, and TGA of the oil samples. The authors would also like to acknowledge Care-Keralam, Thrissur, Kerala, India for carrying out the fatty acid analysis by GC-MS.

Author information

Authors and Affiliations

Authors

Contributions

Pranav Prasannakumar: Conceptualization, Investigation, Methodology, Formal analysis, Writing- original draft preparation. Rani Santhakumari: Conceptualization, Methodology, Supervision, Validation, Writing- review & editing. Ananthan D Thampi: Investigation, Methodology, Formal analysis, Writing- original draft preparation. Edla Sneha: Conceptualization, Methodology, Validation. KS Adithyan: Formal analysis, Writing- original draft preparation. S Sabarinath: Validation.

Corresponding author

Correspondence to Rani Santhakumari.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasannakumar, P., Santhakumari, R., Thampi, A.D. et al. Epoxidation of Calophyllum inophyllum oil fatty acid methyl esters as a potential base-stock for green cutting fluid. Environ Dev Sustain (2024). https://doi.org/10.1007/s10668-024-05018-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-024-05018-1

Keywords

Navigation