Skip to main content
Log in

Monitoring dynamics of urban expansion using time series Landsat imageries and machine learning in Delhi NCR

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

In recent decades, cities in developing countries have experienced rapid and unregulated urban expansion. Hence, this study is designed to examine the built-up growth in Delhi NCR using optimized machine learning (ML) techniques and Landsat datasets. The LULC classification and built-up area extraction is done using multiple optimized ML algorithms while landscape fragmentation analysis (LFA) and frequency approach (FA) were used for further analysis of built-up area. The study shows a substantial increase in built-up area (328%) while agricultural land witnessed a decline of about 5.8% during 1990–2018. The city-wise analysis of built-up expansion shows that all the cities of Delhi NCR have witnessed very fast built-up expansion except Rohtak. Moreover, analysis of FA shows that maximum built- up area is under frequency 5 (91,184 hectare) frequency 6 (90,536 hectare) while minimum area is under frequency (45,511 hectare) indicating that built-up expansion in Delhi NCR is becoming permanent with time. Further, the result of CCDM demonstrates high suitability of LFA and FA in analyzing the built-up growth in Delhi NCR. The study may be helpful in the formulation of urban management plans and policies by the town planners and policy makers to tackle the problems of urban expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets used and generated during this research are available from the corresponding author on reasonable request.

Code availability

The codes used in this research are available from the corresponding author on reasonable request.

References

  • Abhishek, N., Jenamani, M., & Mahanty, B. (2017). Urban growth in Indian cities: Are the driving forces really changing? Habitat International, 69, 48–57.

    Article  Google Scholar 

  • Aguilera, M. A., Tapia, J., Gallardo, C., Núñez, P., & Varas-Belemmi, K. (2020). Loss of coastal ecosystem spatial connectivity and services by urbanization: Natural-to-urban integration for bay management. Journal of Environmental Management, 276, 111297.

    Article  Google Scholar 

  • Ahmad, M. N., Cheng, Q., & Luo, F. (2022). Dynamic linkage between urbanization, electrical power consumption, and suitability analysis using remote sensing and GIS techniques. Photogrammetric Engineering & Remote Sensing, 88(3), 171–179.

    Article  Google Scholar 

  • Ahmad, M. N., Shao, Z., Javed, A., Islam, F., Ahmad, H. H., & Aslam, R. W. (2023a). The cellular automata approach in dynamic modelling of land use change detection and future simulations based on remote sensing data in Lahore Pakistan. Photogrammetric Engineering & Remote Sensing, 89(1), 47–55.

    Article  Google Scholar 

  • Ahmad, M. N., Shao, Z., & Javed, A. (2023b). Modelling land use/land cover (LULC) change dynamics, future prospects, and its environmental impacts based on geospatial data models and remote sensing data. Environmental Science and Pollution Research, 30(12), 32985–33001.

    Article  Google Scholar 

  • Alam, T., & Banerjee, A. (2023). Characterizing land transformation and densification using urban sprawl metrics in the South Bengal region of India. Sustainable Cities and Society, 89, 104295.

    Article  Google Scholar 

  • Alam, A., Bhat, M. S., & Maheen, M. (2020). Using Landsat satellite data for assessing the land use and land cover change in Kashmir valley. Geojournal, 85, 1529–1543.

    Article  Google Scholar 

  • Asabere, S. B., Acheampong, R. A., Ashiagbor, G., Beckers, S. C., Keck, M., Erasmi, S., & Sauer, D. (2020). Urbanization, land use transformation and spatio-environmental impacts: Analyses of trends and implications in major metropolitan regions of Ghana. Land Use Policy, 96, 104707.

    Article  Google Scholar 

  • Bagheri, B., & Soltani, A. (2023). The spatio-temporal dynamics of urban growth and population in metropolitan regions of Iran. Habitat International, 136, 102797.

    Article  Google Scholar 

  • Bardhan, R., Kurisu, K., & Hanaki, K. (2015). Does compact urban forms relate to good quality of life in high density cities of India? Case of Kolkata. Cities, 48, 55–65.

    Article  Google Scholar 

  • Bibri, S. E., Krogstie, J., & Kärrholm, M. (2020). Compact city planning and development: Emerging practices and strategies for achieving the goals of sustainability. Developments in the Built Environment, 4, 100021.

    Article  Google Scholar 

  • Bren d’Amour, C., Reitsma, F., Baiocchi, G., Barthel, S., Güneralp, B., Erb, K. H., & Seto, K. C. (2017). Future urban land expansion and implications for global croplands. Proceedings of the National Academy of Sciences, 114(34), 8939–8944.

    Article  Google Scholar 

  • Chakraborty, S., Maity, I., Patel, P. P., Dadashpoor, H., Pramanik, S., Follmann, A., & Roy, U. (2021). Spatio-temporal patterns of urbanization in the Kolkata Urban Agglomeration: A dynamic spatial territory-based approach. Sustainable Cities and Society, 67, 102715.

    Article  Google Scholar 

  • Chakraborty, S., Maity, I., Dadashpoor, H., Novotnẏ, J., & Banerji, S. (2022). Building in or out? Examining urban expansion patterns and land use efficiency across the global sample of 466 cities with million + inhabitants. Habitat International, 120, 102503.

    Article  Google Scholar 

  • Chatterjee, D. N., Chatterjee, S., & Khan, A. (2016). Spatial modeling of urban sprawl around Greater Bhubaneswar city, India. Modeling Earth Systems and Environment, 2(1), 1–21.

    Google Scholar 

  • Chaturvedi, S., Shukla, K., Rajasekar, E., & Bhatt, N. (2022). A spatio-temporal assessment and prediction of Ahmedabad’s urban growth between 1990–2030. Journal of Geographical Sciences, 32(9), 1791–1812.

    Article  Google Scholar 

  • Chettry, V. (2022). Geospatial measurement of urban sprawl using multi-temporal datasets from 1991 to 2021: Case studies of four Indian medium-sized cities. Environmental Monitoring and Assessment, 194(12), 860.

    Article  Google Scholar 

  • Chettry, V., & Surawar, M. (2021). Assessment of urban sprawl characteristics in Indian cities using remote sensing: Case studies of Patna, Ranchi, and Srinagar. Environment Development and Sustainability, 23(8), 11913–11935.

    Article  Google Scholar 

  • Dadashpoor, H., Azizi, P., & Moghadasi, M. (2019). Land use change, urbanization, and change in landscape pattern in a metropolitan area. Science of the Total Environment, 655, 707–719.

    Article  CAS  Google Scholar 

  • Das, S., Adhikary, P. P., Shit, P. K., & Bera, B. (2021). Urban wetland fragmentation and ecosystem service assessment using integrated machine learning algorithm and spatial landscape analysis. Geocarto International, 1, 19.

    Google Scholar 

  • Das, T., Naikoo, M. W., Talukdar, S., Parvez, A., Rahman, A., Pal, S., & Mosavi, A. (2022). Analysing process and probability of built-up expansion using machine learning and fuzzy logic in English Bazar, West Bengal. Remote Sensing, 14(10), 2349.

    Article  Google Scholar 

  • Do, A. N. T., Tran, H. D., & Do, T. A. T. (2023). Impacts of urbanization on heat in Ho Chi Minh, southern Vietnam using U-Net model and remote sensing. International Journal of Environmental Science and Technology.

  • Dutta, D., Rahman, A., Paul, S. K., & Kundu, A. (2020). Estimating urban growth in peri-urban areas and its interrelationships with built-up density using earth observation datasets. The Annals of Regional Science, 65(1), 67–82.

    Article  Google Scholar 

  • Galster, G., Hanson, R., Ratcliffe, M. R., Wolman, H., Coleman, S., & Freihage, J. (2001). Wrestling sprawl to the ground: Defining and measuring an elusive concept. Housing Policy Debate, 12(4), 681–717.

    Article  Google Scholar 

  • Guastella, G., Oueslati, W., & Pareglio, S. (2019). Patterns of urban spatial expansion in European cities. Sustainability, 11(8), 2247.

    Article  Google Scholar 

  • Gupta, R. (2014). The pattern of urban land-use changes: A case study of the Indian cities. Environment and Urbanization Asia, 5(1), 83–104.

    Article  Google Scholar 

  • Hamedianfar, A., Gibril, M. B. A., Hosseinpoor, M., & Pellikka, P. K. (2022). Synergistic use of particle swarm optimization, artificial neural network, and extreme gradient boosting algorithms for urban LULC mapping from WorldView-3 images. Geocarto International, 37(3), 773–791.

    Article  Google Scholar 

  • Hatab, A. A., Ravula, P., Nedumaran, S., & Lagerkvist, C. J. (2022). Perceptions of the impacts of urban sprawl among urban and peri-urban dwellers of Hyderabad, India: A latent class clustering analysis. Environment Development and Sustainability, 24, 12787–12812.

    Article  Google Scholar 

  • He, Q., Yan, M., Zheng, L., & Wang, B. (2023). Spatial stratified heterogeneity and driving mechanism of urban development level in China under different urban growth patterns with optimal parameter-based geographic detector model mining. Computers Environment and Urban Systems, 105, 102023.

    Article  Google Scholar 

  • Huang, X., Xia, J., Xiao, R., & He, T. (2019). Urban expansion patterns of 291 Chinese cities, 1990–2015. International Journal of Digital Earth, 12(1), 62–77.

    Article  Google Scholar 

  • Huy, D. H., Hien, T. T., & Nam, N. X. T. (2022). On-road particulate matter exposure in urban sprawl scenarios in Ho Chi Minh City, Vietnam. International Journal of Environmental Science and Technology, 1–14.

  • Jaeger, J. A. (2000). Landscape division, splitting index, and effective mesh size: New measures of landscape fragmentation. Landscape Ecology, 15(2), 115–130.

    Article  Google Scholar 

  • Jenks, M. (2017). The sustainable city: A good and secure quality of life? Growing Compact (pp. 139–154). Routledge.

  • Kadhim, N., Ismael, N. T., & Kadhim, N. M. (2022). Urban landscape fragmentation as an indicator of urban expansion using sentinel-2 imageries. Civ Eng J, 89, 1799–1814.

    Article  Google Scholar 

  • Kantakumar, L. N., Kumar, S., & Schneider, K. (2016). Spatiotemporal urban expansion in Pune metropolis, India using remote sensing. Habitat International, 51, 11–22.

    Article  Google Scholar 

  • Karimi, F., Sultana, S., Babakan, A. S., & Suthaharan, S. (2019). An enhanced support vector machine model for urban expansion prediction. Computers Environment and Urban Systems, 75, 61–75.

    Article  Google Scholar 

  • Kumar, J., & Sharma, R. (2022). Highway peripheral urbanization, industrialization and land use change: a case study of NH-48 in National Capital Region, Delhi, India. GeoJournal, 1–13.

  • Kumar, S., Ghosh, S., & Singh, S. (2022). Polycentric urban growth and identification of urban hot spots in Faridabad, the million-plus metropolitan city of Haryana, India: A zonal assessment using spatial metrics and GIS. Environment Development and Sustainability, 24(6), 8246–8286.

    Article  Google Scholar 

  • Kumari, B., Tayyab, M., Ahmed, I. A., Baig, M. R. I., Ali, M., Usmani, T. M., & Rahman, A. (2022). Land use/land cover (LU/LC) change dynamics using indices overlay method in Gautam Buddha Nagar District-India. Geojournal, 87(3), 2287–2305.

    Article  Google Scholar 

  • Lai, Z., Ge, D., Xia, H., Yue, Y., & Wang, Z. (2020). Coupling coordination between environment, economy and tourism: A case study of China. Plos One, 15(2), e0228426.

  • Liu, G., Li, J., & Nie, P. (2022). Tracking the history of urban expansion in Guangzhou (China) during 1665–2017: Evidence from historical maps and remote sensing images. Land Use Policy, 112, 105773.

    Article  Google Scholar 

  • Lu, H., Zhou, L., Chen, Y., An, Y., & Hou, C. (2017). Degree of coupling and coordination of eco-economic system and the influencing factors: A case study in Yanchi County, Ningxia Hui Autonomous Region, China. Journal of Arid Land, 9(3), 446–457.

    Article  Google Scholar 

  • Mahtta, R., Mahendra, A., & Seto, K. C. (2019). Building up or spreading out? Typologies of urban growth across 478 cities of 1 million+. Environmental Research Letters, 14(12), 124077.

    Article  Google Scholar 

  • Mallick, S. K., Rudra, S., & Maity, B. (2023). Unplanned urban built-up growth creates problem in human adaptability: Evidence from a growing up city in eastern himalayan foothills. Applied Geography, 150, 102842.

    Article  Google Scholar 

  • Melchiorri, M., Florczyk, A. J., Freire, S., Schiavina, M., Pesaresi, M., & Kemper, T. (2018). Unveiling 25 years of planetary urbanization with remote sensing: Perspectives from the global human settlement layer. Remote Sensing, 10(5), 768.

    Article  Google Scholar 

  • Mishra, S., Kushwaha, A., Aggrawal, D., & Gupta, A. (2019). Comparative emission study by real-time congestion monitoring for stable pollution policy on temporal and meso-spatial regions in Delhi. Journal of Cleaner Production, 224, 465–478.

    Article  Google Scholar 

  • Mithun, S., Sahana, M., Chattopadhyay, S., Johnson, B. A., Khedher, K. M., & Avtar, R. (2021). Monitoring Metropolitan Growth Dynamics for Achieving Sustainable urbanization (SDG 11.3) in Kolkata Metropolitan Area, India. Remote Sensing, 13(21), 4423.

    Article  Google Scholar 

  • Mohabey, D. P., Nongkynrih, J. M., & Kumar, U. (2023). Urban growth trend analysis of proposed Greater Silchar City, India, using landscape metrics and Shannon Entropy model. Environment Development and Sustainability, 1–32.

  • Mourya, M., Kumari, B., Tayyab, M., Paarcha, A., Asif, & Rahman, A. (2021). Indices based assessment of built-up density and urban expansion of fast growing Surat city using multi-temporal landsat data sets. Geojournal, 86, 1607–1623.

    Article  Google Scholar 

  • Mustafa, A., Van Rompaey, A., Cools, M., Saadi, I., & Teller, J. (2018). Addressing the determinants of built-up expansion and densification processes at the regional scale. Urban Studies, 55(15), 3279–3298.

    Article  Google Scholar 

  • Naikoo, M. W., Rihan, M., Peer, A. H., Talukdar, S., Mallick, J., Ishtiaq, M., & Rahman, A. (2022). Analysis of peri-urban land use/land cover change and its drivers using geospatial techniques and geographically weighted regression. Environmental Science and Pollution Research, 1–19.

  • Naikoo, M. W., Talukdar, S., Ishtiaq, M., & Rahman, A. (2023). Modelling built-up land expansion probability using the integrated fuzzy logic and coupling coordination degree model. Journal of Environmental Management, 325, 116441.

    Article  Google Scholar 

  • Naikoo, M. W., Shahfahad, Talukdar, S., Rihan, M., Ahmed, I. A., Hang, T., & Rahman, H. (2024). A. A Geospatial Approach to Mapping and Monitoring Real Estate-Induced Urban Expansion in the National Capital Region of Delhi. PFG–Journal of Photogrammetry Remote Sensing and Geoinformation Science, 1–24.

  • NCRPB (2022). National Capital Region Planning Board. Ministry of Housing and Urban Affairs, Government of India. https://ncrpb.nic.in/drp2041.html Accessed on 21/07/2022.

  • Neog, R. (2023). Monitoring land use dynamics, urban sprawl, and land surface temperature in Dimapur urban area, Nagaland, India. International Journal of Environmental Science and Technology, 20(7), 7519–7532.

    Article  Google Scholar 

  • Noor, N. M., Rosni, N. A., Hashim, M., & Abdullah, A. (2018). Developing land use geospatial indices (LUGI) for sprawl measurement in alpha cities: Case study of Kuala Lumpur. Malaysia Cities, 82, 127–140.

    Article  Google Scholar 

  • Novotný, J., Chakraborty, S., & Maity, I. (2022). Urban expansion of the 43 worlds’ largest megacities: A search for unified macro-patterns. Habitat International, 129, 102676.

    Article  Google Scholar 

  • Parent, J., Civco, D., & Hurd, J. (2007). Simulating future forest fragmentation in a Connecticut region undergoing suburbanization. In ASPRS 2007 Annual Conference Tampa, Florida.

  • Rahman, A., Kumar, S., Fazal, S., & Siddiqui, M. A. (2012). Assessment of land use/land cover change in the North-West District of Delhi using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 40, 689–697.

    Article  Google Scholar 

  • Rana, V. K., & Suryanarayana, T. M. V. (2020). Performance evaluation of MLE, RF and SVM classification algorithms for watershed scale land use/land cover mapping using sentinel 2 bands. Remote Sensing Applications: Society and Environment, 19, 100351.

    Article  Google Scholar 

  • Ranagalage, M., Morimoto, T., Simwanda, M., & Murayama, Y. (2021). Spatial analysis of urbanization patterns in four rapidly growing south Asian cities using Sentinel-2 Data. Remote Sensing, 13(8), 1531.

    Article  Google Scholar 

  • Rao, Y., Zhou, J., Zhou, M., He, Q., & Wu, J. (2020). Comparisons of three-dimensional urban forms in different urban expansion types: 58 sample cities in China. Growth and Change, 51(4), 1766–1783.

    Article  Google Scholar 

  • Reba, M., & Seto, K. C. (2020). A systematic review and assessment of algorithms to detect, characterize, and monitor urban land change. Remote Sensing of Environment, 242, 111739.

    Article  Google Scholar 

  • Rustiadi, E., Pravitasari, A. E., Setiawan, Y., Mulya, S. P., Pribadi, D. O., & Tsutsumida, N. (2021). Impact of continuous Jakarta megacity urban expansion on the formation of the Jakarta-Bandung conurbation over the rice farm regions. Cities, 111, 103000.

    Article  Google Scholar 

  • Sahana, M., Hong, H., & Sajjad, H. (2018). Analyzing urban spatial patterns and trend of urban growth using urban sprawl matrix: A study on Kolkata urban agglomeration, India. Science of the Total Environment, 628, 1557–1566.

    Article  Google Scholar 

  • Saxena, A., Jat, M. K., & Clarke, K. C. (2021). Development of SLEUTH-Density for the simulation of built-up land density. Computers Environment and Urban Systems, 86, 101586.

    Article  Google Scholar 

  • Shahfahad, Naikoo, M. W., Islam, A. R. M. T., Mallick, J., & Rahman, A. (2022). Land use/land cover change and its impact on surface urban heat island and urban thermal comfort in a metropolitan city. Urban Climate, 41, 101052.

    Article  Google Scholar 

  • Shao, Z., Ahmad, M. N., Javed, A., Islam, F., Jahangir, Z., & Ahmad, I. (2023). Expansion of Urban Impervious surfaces in Lahore (1993–2022) based on GEE and remote Sensing Data. Photogrammetric Engineering & Remote Sensing, 89(8), 479–486.

    Article  Google Scholar 

  • Sharma, A. K., Baliyan, P., & Kumar, P. (2018). Air pollution and public health: The challenges for Delhi, India. Reviews on Environmental Health, 33(1), 77–86.

    Article  CAS  Google Scholar 

  • Sharma, S., Nahid, S., Sharma, M., Sannigrahi, S., Anees, M. M., Sharma, R., & Joshi, P. K. (2020). A long-term and comprehensive assessment of urbanization-induced impacts on ecosystem services in the capital city of India. City and Environment Interactions, 7, 100047.

    Article  Google Scholar 

  • Shi, T., Yang, S., Zhang, W., & Zhou, Q. (2020). Coupling coordination degree measurement and spatiotemporal heterogeneity between economic development and ecological environment-empirical evidence from tropical and subtropical regions of China. Journal of Cleaner Production, 244, 118739.

    Article  Google Scholar 

  • Singh, G., & Pandey, A. (2021). Evaluation of classification algorithms for land use land cover mapping in the snow-fed Alaknanda River Basin of the Northwest Himalayan Region. Applied Geomatics, 13(4), 863–875.

    Article  Google Scholar 

  • Steurer, M., & Bayr, C. (2020). Measuring urban sprawl using land use data. Land Use Policy, 97, 104799.

    Article  Google Scholar 

  • Sumbo, D. K., Anane, G. K., & Inkoom, D. K. B. (2023). Peri-urbanisation and loss of arable land’: Indigenes’ farmland access challenges and adaptation strategies in Kumasi and Wa, Ghana. Land Use Policy, 126, 106534.

    Article  Google Scholar 

  • Sun, C., Wu, Z. F., Lv, Z. Q., Yao, N., & Wei, J. B. (2013). Quantifying different types of urban growth and the change dynamic in Guangzhou using multi-temporal remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 21, 409–417.

  • Sun, Y., & Zhao, S. (2018). Spatiotemporal dynamics of urban expansion in 13 cities across the Jing-Jin-Ji Urban Agglomeration from 1978 to 2015. Ecological Indicators, 87, 302–313.

    Article  Google Scholar 

  • Sun, X., Crittenden, J. C., Li, F., Lu, Z., & Dou, X. (2018). Urban expansion simulation and the spatio-temporal changes of ecosystem services, a case study in Atlanta Metropolitan area, USA. Science of the Total Environment, 622, 974–987.

    Article  Google Scholar 

  • Sun, L., Chen, J., Li, Q., & Huang, D. (2020). Dramatic uneven urbanization of large cities throughout the world in recent decades. Nature Communications, 11(1), 5366.

    Article  CAS  Google Scholar 

  • Talukdar, S., Eibek, K. U., Akhter, S., Ziaul, S. K., Islam, A. R., M. T., & Mallick, J. (2021). Modeling fragmentation probability of land-use and land-cover using the bagging, random forest and random subspace in the Teesta River Basin, Bangladesh. Ecological Indicators, 126, 107612.

    Article  Google Scholar 

  • Talukdar, S., Naikoo, M. W., Mallick, J., Praveen, B., Sharma, P., Islam, A. R. M. T., & Rahman, A. (2022). Coupling geographic information system integrated fuzzy logic-analytical hierarchy process with global and machine learning based sensitivity analysis for agricultural suitability mapping. Agricultural Systems, 196, 103343.

    Article  Google Scholar 

  • Tang, J., & Di, L. (2019). Past and future trajectories of farmland loss due to rapid urbanization using landsat imagery and the Markov-CA model: A case study of Delhi, India. Remote Sensing, 11(2), 180.

    Article  Google Scholar 

  • Tian, Y., Zhou, D., & Jiang, G. (2020). Conflict or coordination? Multiscale assessment of the spatio-temporal coupling relationship between urbanization and ecosystem services: The case of the Jingjinji Region, China. Ecological Indicators, 117, 106543.

    Article  Google Scholar 

  • UN (2019). Department of Economic and Social Affairs, Population Division. World Urbanization Prospects 2018: Highlights (ST/ESA/SER.A/421).

  • UN-Habitat (2014). A new strategy of sustainable neighbourhood planning: Five principles. Nairobi, Kenya: United Nations Human Settlements Programme.

  • UN-Habitat (2015). Issue paper on urban and spatial planning and design. Nairobi, Kenya: United Nations Human Settlements Programme, 2015.

  • Vinayak, B., Lee, H. S., & Gedem, S. (2021). Prediction of land use and land cover changes in Mumbai City, India, using remote sensing data and a multilayer perceptron neural network-based Markov chain model. Sustainability, 13(2), 471.

    Article  Google Scholar 

  • Vogt, W. P. (2007). Quantitative research methods for professionals. Allyn & Bacon.

  • Wang, D., Jiang, D., Fu, J., Lin, G., & Zhang, J. (2020). Comprehensive assessment of production–living–ecological space based on the coupling coordination degree model. Sustainability, 12(5), 2009.

  • Wu, Y., Li, S., & Yu, S. (2016). Monitoring urban expansion and its effects on land use and land cover changes in Guangzhou city, China. Environmental Monitoring and Assessment, 188, 1–15.

    Article  CAS  Google Scholar 

  • Yao, L., Sun, S., Song, C., Li, J., Xu, W., & Xu, Y. (2021). Understanding the spatiotemporal pattern of the urban heat island footprint in the context of urbanization, a case study in Beijing, China. Applied Geography, 133, 102496.

    Article  Google Scholar 

  • Yu, X. J., & Ng, C. N. (2007). Spatial and temporal dynamics of urban sprawl along two urban–rural transects: A case study of Guangzhou, China. Landscape and Urban Planning, 79(1), 96–109.

    Article  Google Scholar 

  • Yuan, Y., Chen, D., Wu, S., Mo, L., Tong, G., Daohao, & Yan (2019). Urban sprawl decreases the value of ecosystem services and intensifies the supply scarcity of ecosystem services in China. Science of the Total Environment, 697, 134170.

    Article  Google Scholar 

  • Yue, W., Chen, Y., Thy, P. T. M., Fan, P., Liu, Y., & Zhang, W. (2021). Identifying urban vitality in metropolitan areas of developing countries from a comparative perspective: Ho Chi Minh City versus Shanghai. Sustainable Cities and Society, 65, 102609.

    Article  Google Scholar 

  • Zhang, X., Zhong, L., & Yu, H. (2022). Sustainability assessment of tourism in protected areas: A relational perspective. Global Ecology and Conservation, 35, e02074.

    Article  Google Scholar 

  • Zhou, D., Li, Z., Wang, S., Tian, Y., Zhang, Y., & Jiang, G. (2021). How does the newly urban residential built-up density differ across Chinese cities under rapid urban expansion? Evidence from residential FAR and statistical data from 2007 to 2016. Land Use Policy, 104, 105365.

    Article  Google Scholar 

  • Zhou, C., Gong, M., Xu, Z., & Qu, S. (2022). Urban scaling patterns for sustainable development goals related to water, energy, infrastructure, and society in China. Resources Conservation and Recycling, 185, 106443.

    Article  Google Scholar 

Download references

Acknowledgements

Authors thankfully acknowledge the Deanship of Scientific Research for proving administrative and financial supports. Funding for this research was given under award numbers RGP2/411/44 by the Deanship of Scientific Research; King Khalid University, Ministry of Education, Kingdom of Saudi Arabia.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Mohd Waseem Naikoo, Swapan Talukdar, & Atiqur Rahman; Methodology: Mohd Waseem Naikoo, Swapan Talukdar, Ahmad A. Bindajam & Shahfahad; Formal analysis and investigation: Ahmad A. Bindajam, Mohammad Tayyab, Javed Mallick, & Asif; Writing - original draft preparation: Mohd Waseem Naikoo, Asif, & Shahfahad; Writing - review and editing: Javed Mallick, Asif, & Atiqur Rahman; Resources: Ahmad A. Bindajam, Javed Mallick & M. Ishtiaq; Supervision: Atiqur Rahman & M. Ishtiaq.

Corresponding authors

Correspondence to Javed Mallick or Atiqur Rahman.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

All authors participated in the preparation of the manuscript.

Consent for publication

All authors consent for publication.

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naikoo, M.W., Bindajam, A.A., Shahfahad et al. Monitoring dynamics of urban expansion using time series Landsat imageries and machine learning in Delhi NCR. Environ Dev Sustain (2024). https://doi.org/10.1007/s10668-024-04859-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-024-04859-0

Keywords

Navigation