Skip to main content
Log in

Microbial bioremediation of the oil polluted environment and the sustainable development goals of pillar Planet of the Agenda 2030

  • Review
  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Sustainable development is a concept that is based on the development of the human society without compromising the natural resources, which should improve human lives and protect the environment for future generations. The UN Agenda 2030 has set 17 goals aimed to transform the development of humanity in accordance with the environment, and with the social and economic rights. This concept is recognized as one of the most important concepts for the future international development. One of the four main pillars of the Agenda 2030 is a pillar Planet, which consists of five sustainability development goals (SDGs) aiming to clean the pollution on the Earth and set the sustainable use of the Earth’s resources. The aim of paper is to demonstrate the role of oil pollution bioremediation in achieving SDGs by assessing the importance of this technology and using microorganisms as natural capacity of the Earth for self-cleaning. This review article highlights the applicability of bioremediation as an oil pollution cleaning technique and reviews the compliance of bioremediation with the SDGs. According to this review, bioremediation techniques are an important element which can help in integrated approach to achieve several goals set by the Agenda 2030. Due to the incomplete biodegradation and co-contamination by other chemicals, further research is needed in order to make bioremediation a more effective biotechnological strategy. It is necessary to integrate the Agenda 2030 to university curricula and stream SDGs into scientific funding by opening dedicated calls that contribute to selected SDGs of the Agenda 2030.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The authors declare that data supporting the findings of this study are available within the article.

References

  • Abou-Khalil, C., Prince, R. C., Greer, C. W., Lee, K., & Boufadel, M. C. (2022). Bioremediation of petroleum hydrocarbons in the upper parts of sandy beaches. Environmental Science & Technology, 56(12), 8124–8131. https://doi.org/10.1021/acs.est.2c01338 (accessed 23 Feb 2023).

  • Adetitun, D., Akinmayowa, V., Atolani, O., & Olayemi, A. (2018). Biodegradation of jet fuel by three Gram Negative Bacilli isolated from kerosene contaminated soil. Pollution, 4(2), 291–303. https://doi.org/10.22059/poll.2017.241366.319 (accessed 10 Nov 2023).

  • Akinsemolu, A. A. (2018). The role of microorganisms in achieving the sustainable development goals. Journal of Cleaner Production, 182, 139–155. https://doi.org/10.1016/j.jclepro.2018.02.081(accessed 23 Feb 2023).

  • Albers, P. H. (2003). Petroleum and individual PAHs. In D. J. Hoffman, B. A. Rattner, G. A. Burton, & J. Cairns (Eds.), Handbook of Ecotoxicology (2nd ed., pp. 341–373). Lewis Publishers by CRC Press LLC.

  • Ali, M., Song, X., Ding, D., Wang, Q., Zhang, Z., & Tang, Z. (2022). Bioremediation of PAHs and heavy metals co-contaminated soils: Challenges and enhancement strategies. Environmental Pollution, 295, 118686. https://doi.org/10.1016/j.envpol.2021.118686 (accessed 23 Feb 2023).

  • Allison, E., & Mandler, B. (2018). Non-fuel products of oil and gas: Plastics, fertilizers, synthetic fibers, pharmaceuticals, detergents, and more. Petroleum and the Environment, Part 17/24 AGI Critical Issues Program: www.americangeosciences.org/critical-issuesSupported by the AAPG Foundation. © 2018 American Geosciences Institute. URL: https://www.americangeosciences.org/geoscience-currents/non-fuel-products-oil-and-gas (accessed 23 Feb 2023).

  • Al-Samhan, M., Al-Fadhli, J., Al-Otaibi, A. M., Al-Attar, F., Bouresli, R., & Rana, M. S. (2022). Prospects of refinery switching from conventional to integrated: An opportunity for sustainable investment in the petrochemical industry. Fuel, 310, 122161. https://doi.org/10.1016/j.fuel.2021.122161 (23 February 2023).

  • ATSDR. (1999). Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological profile for total petroleum hydrocarbons (TPH). U.S. Department of Health and Human Services, Public Health Service. URL: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=424&tid=75 (accessed 23 Feb 2023).

  • AUDI. (2000). Self-Study Programme 230: Motor Vehicle Exhaust Emissions Composition, emission control, standards. URL: http://www.volkspage.net/technik/ssp/ssp/SSP_230.pdf (accessed 23 Feb 2023).

  • Avdalović, J. (2015). Generating of soil in the process of bioremediation. PhD thesis, pp. 64–91. (in Serbian).

  • Avdalović, J., Đurić, A., Miletić, S., Ilić, M., Milić, J., & Vrvić, M. M. (2016). Treatment of a mud pit by bioremediation. Waste Management & Research, 34, 734–739. https://doi.org/10.1177/0734242X16652961 (accessed 23 Feb 2023).

  • Avdalović, J., Miletić, S., Božović, O., Šolević Knudsen, T., Stanković, D., Lugonja, N., Spasić, S., Joksimović, K., Dragičević, I., & Vrvić, M. M. (2021). Study on the assessment of humification processes during biodegradation of heavy residual fuel oil. Science of the Total Environment, 797, 149099. https://doi.org/10.1016/j.scitotenv.2021.149099 (accessed 23 Feb 2023).

  • Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques–classification based on site of application: Principles, advantages, limitations and prospects. World Journal of Microbiology & Biotechnology, 32, 180. https://doi.org/10.1007/s11274-016-2137-x (accessed 23 Feb 2023).

  • BPF. (2019). The British Plastics Federation (BPF) Oil Consumption. URL: https://www.bpf.co.uk/press/oil_consumption.aspx (accessed 23 Feb 2023).

  • Brown, L. D., Cologgi, D. L., Gee, K. F., & Ulrich, A. C. (2017). Bioremediation of oil spills on land. In M. Fingas (Ed.), Oil spill science and technology (pp. 699–728). Elsevier Inc. https://doi.org/10.1016/B978-0-12-809413-6.00012-6 (accessed 23 Feb 2023).

  • Brundtland, G. (1987). Report of the World Commission on Environment and Development: Our Common Future. United Nations General Assembly document A/42/427.

  • Bulatović, S., Marić, N., Šolević Knudsen, T., Avdalović, J., Ilić, M., Jovančićević, B., & Vrvić, M. M. (2020). Bioremediation of groundwater contaminated with petroleum hydrocarbons applied at a site in Belgrade (Serbia). Journal of the Serbian Chemical Society, 85, 1067–1081. https://doi.org/10.2298/JSC191023003B (accessed 23 Feb 2023).

  • Bulatović, S., Ilić, M., Šolević Knudsen, T., Milić, J., Pucarević, M., Jovančićević, B., & Vrvić, M. M. (2021). Evaluation of potential human health risks from exposure to volatile organic compounds in contaminated urban groundwater in the Sava river aquifer, Belgrade, Serbia. Environmental Geochemistry and Health, 44, 3451–34722. https://doi.org/10.1007/s10653-021-01119-2 (accessed 23 Feb 2023).

  • Cappelletti, M., Fedi, S., & Zannoni, D. (2019). Degradation of alkanes in Rhodococcus. In Alvarez, H. (Ed.), Biology of Rhodococcus. Microbiology Monographs, vol 16. Springer. https://doi.org/10.1007/978-3-030-11461-9_6 (accessed 10 Nov 2023).

  • CDC. (2014). Centres of Disease and Control Prevention (CDC) and the Safe Water System. CDC and the Safe Water System – Fact Sheets URL: https://www.cdc.gov/safewater/ (accessed 23 Feb 2023).

  • Cerff, B., Key, D., & Bladergroen, B. (2021). A review of the processes associated with the removal of oil. Water Pollution Sustainability, 13, 12339. https://doi.org/10.3390/su132212339 (accessed 23 Feb 2023).

  • Dammel, F., Ochterbeck, J. M., & Stephan, P. (2009). Thermodynamics. In K. H. Grote & E. K. Antonsson (Eds.), Springer handbook of mechanical engineering, Part B applications in mechanical engineering (pp. 223–294). Springer Science & Business Media. https://doi.org/10.1007/978-3-540-30738-9_4 (accessed 23 Feb 2023).

  • Das, M., & Adholeya, A. (2012). Role of microorganisms in remediation of contaminated soil. In T. Satyanarayana, B. N. Johri, & A. Prakash (Eds.), Microorganisms in environmental management: Microbes and environment (pp. 81–111). Springer Science & Business Media BV. https://doi.org/10.1007/978-94-007-2229-3_4 (accessed 23 Feb 2023).

  • Das, S., & Dash, H. R. (2014). Microbial bioremediation: A potential tool for restoration of contaminated areas. In: D. Surajit (Ed), Microbial biodegradation and bioremediation (pp. 1–21). Elsevier. https://doi.org/10.1016/B978-0-12-800021-2.00001-7 (accessed 23 Feb 2023).

  • Dave, D., & Ghaly, A. E. (2011). Remediation technologies for marine oil spills: A critical review and comparative analysis. American Journal of Environmental Sciences, 7, 423–440. https://doi.org/10.3844/ajessp.2011.423.440 (accessed 23 Feb 2023).

  • Dias, F. F., & Bhat, J. V. (1964). Microbial ecology of activated sludge. Applied Microbiology, 12, 412–417. https://doi.org/10.1128/am.12.5.412-417.1964 (accessed 23 Feb 2023).

  • Dixit, R. W., Malaviya, D., Pandiyan, K., Singh, U. B., Sahu, A., Shukla, R., Singh, B. P., Rai, J. P., Sharma, P. K., Lade, H., & Paul, D. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability, 7, 2189–2212. https://doi.org/10.3390/su7022189 (accessed 23 Feb 2023).

  • Dodds, W. K., & Whiles, M. R. (2010). Freshwater ecology: Concepts and environmental applications of limnology. Elsevier BV.

  • Đorđević, D., & Šolević, T. (2008). The contributions of high- and low altitude emission sources to the near ground concentrations of air pollutants. Atmospheric Research, 87, 170–182. https://doi.org/10.1016/j.atmosres.2007.08.005 (accessed 23 Feb 2023).

  • Durval, I. J., Resende, A. H., Figueiredo, M. A., Luna, J. M., Rufino, R. D., & Sarubbo, L. A. (2019). Studies on biosurfactants produced using Bacillus cereus isolated from seawater with biotechnological potential for marine oil‐spill bioremediation. Journal of Surfactants and Detergents, 22, 349–363. https://doi.org/10.1002/jsde.12218 (accessed 23 Feb 2023).

  • EC. (2015). The European Commission (EC) A European Strategy for Plastics in a Circular Economy. URL: https://www.europarc.org/wp-content/uploads/2018/01/Eu-plastics-strategy-brochure.pdf (accessed 23 Feb 2023).

  • EC. (2022). European Commission. Directorate-General for Environment Assessment of measures to reduce marine litter from single use plastics. https://circabc.europa.eu/ui/group/6e9b7f79-da96-4a53-956f-e8f62c9d7fed/library/10fe4f5e-45cb-4604-8e8a-247d8d76f1f5/details?download=true (accessed 23 Feb 2023).

  • EU. (2015). Directive (EU) 2015/720 of the European Parliament and of the Council of 29 April 2015 amending Directive 94/62/EC as regards reducing the consumption of lightweight plastic carrier bags. http://data.europa.eu/eli/dir/2015/720/oj (accessed 23 Feb 2023).

  • EU. (2018). European Parliament and Council Directive 94/62/EC of 20 December 1994 on packaging and packaging waste. http://data.europa.eu/eli/dir/1994/62/oj (accessed 23 Feb 2023).

  • Eurostat. (2020). Statistical office of the European Union: Statistics explained; Oil and petroleum products - a statistical overview. URL: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Oil_and_petroleum_products_-_a_statistical_overview&oldid=404136#Production_of_crude_oil (accessed 24 Feb 2023).

  • Ferreira, D. C., Graziele, I., Marques, R. M., & Gonçalves, J. (2021). Investment in drinking water and sanitation infrastructure and its impact on waterborne diseases dissemination: The Brazilian case. Science of the Total Environment, 779, 146279, https://doi.org/10.1016/j.scitotenv.2021.146279. (accessed 24 Feb 2023).

  • Ganesan, M., Mani, R., Sai, S., Kasivelu, G., Awasthi, M. K., Rajagopal, R., Wan Azelee, N. I., Selvi, P. K., Chang, P. W., & Ravindran, B. (2022). Bioremediation by oil degrading marine bacteria: An overview of supplements and pathways in key processes. Chemosphere, 303, 134956. https://doi.org/10.1016/j.chemosphere.2022.134956. (accessed 10 Nov 2023).

  • Gao, P., Xu, W., Sontag, P., Li, X., Xue, G., Liu, T., & Sun, W. (2016). Correlating microbial community compositions with environmental factors in activated sludge from four full-scale municipal wastewater treatment plants in Shanghai, China. Applied Microbiology and Biotechnology, 100, 4663–4673. https://doi.org/10.1007/s00253-016-7307-0 (accessed 24 Feb 2023).

  • Gao, H., Zhang, J., Lai, H., & Xue, Q. (2017) Degradation of asphaltenes by two Pseudomonas a strains and their effects on physicochemical properties of crude oil. International Biodeterioration & Biodegradation, 122, 12–22. https://doi.org/10.1016/j.ibiod.2017.04.010 (accessed 10 Nov 2023).

  • Garcia-Gonzales, D., Shonkoff, S. B. C., Hays, J., & Michael Jerrett, M. (2019) Hazardous air pollutants associated with upstream oil and natural gas development: A critical synthesis of current peer-reviewed literature. Annual Review of Public Health, 40, 283–304. https://doi.org/10.1146/annurev-publhealth-040218-043715 (accessed 10 Nov 2023).

  • Geremia, E., Ripa, M., Catone, C.M., & Ulgiati, S. (2021). A review about microalgae wastewater treatment for bioremediation and biomass production—a new challenge for Europe. Environments, 8, 136. https://doi.org/10.3390/environments8120136 (accessed 24 Feb 2023).

  • Ghosal, D., Ghosh, S., Dutta, T. K., & Ahn, Y. (2016). Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Frontiers in Microbiology, 7, 1369. https://doi.org/10.3389/fmicb.2016.01369 (accessed 24 Feb 2023).

  • Gilan, O., Hadar, Y., & Sivan, A. (2004). Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Applied Microbiology and Biotechnology, 65, 97–104. https://doi.org/10.1007/s00253-004-1584-8 (accessed 24 Feb 2023).

  • Gojgić-Cvijović, G., Milić, J., Šolević, T., Beškoski, V., Ilić, M., Djokić, L., Narančić, T., & Vrvić, M. M. (2012). Biodegradation of petroleum sludge and petroleum polluted soil by a bacterial consortium: A laboratory study. Biodegradation, 23, 1–14. https://doi.org/10.1007/s10532-011-9481-1 (accessed 24 Feb 2023).

  • Hamilton B., & Falkiner R. J. (2003). Motor Gasoline. In G. Totten, S. Westbrook, & R. Shah (Eds.), Fuels and lubricants handbook: Technology, properties, performance, and testing (pp. 61–88). ASTM International.

  • Hashemi, S. R., Heydarinasab, A., & Amoozegar, M. A. (2020). Modified biological treatment of spent caustic effluent from liquefied petroleum gas. Plants Chemical Engineering & Technology, 43, 380-385. https://doi.org/10.1002/ceat.201900368 (accessed 10 Nov 2023).

  • Head, I. M. (1998). Bioremediation: Towards a credible technology. Microbiology, 144, 599–608. https://doi.org/10.1099/00221287-144-3-599 (accessed 24 Feb 2023).

  • Hollebone, B. P. (2015). Oil physical properties: Measurement and correlation. In M. Fingas (Ed.), Handbook of oil spill science and technology (First Ed., pp. 35–50). John Wiley & Sons Inc.

  • Hosseininejad, M., Salehi, F., Mirzamohammadi, E., Mohsenizadeh, S. A., & Mohammadi, S. (2021). The relationship between occupational exposure to organic solvents and metabolic syndrome in petroleum refinery workers in Tehran, Iran. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 15, 102223. https://doi.org/10.1016/j.dsx.2021.102223 (accessed 24 Feb 2023).

  • Hunt, L. J., Duca, D., Dan, T., & Knopper, L. D. (2018). Petroleum hydrocarbon (PHC) uptake in plants: A literature review. Environmental Pollution, 245, 472–484. https://doi.org/10.1016/j.envpol.2018.11.012 (accessed 24 Feb 2023).

  • IAP. (2017). Inter Academy Partnership (IAP) Supporting the Sustainable Development Goals: A Guide for Merit-Based Academies. The IAP-Policy Secretariat URL: https://www.interacademies.org/sites/default/files/resources/surveyfeedbackslidepack.pdf (accessed 24 Feb 2023).

  • IARC. (1989). International Agency for Research on Cancer (IAC) Occupational Exposures in Petroleum Refining; Crude Oil and Major Petroleum Fuels, Occupational Exposures in Petroleum Refining. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 45–8. IARC Working Group on the Evaluation of Carcinogenic Risk to Humans. Lyon (FR): International Agency for Research on Cancer. URL: https://monographs.iarc.fr/wp-content/uploads/2018/06/mono45-6.pdf (accessed 24 Feb 2023).

  • Ivshina, I. B., Kuyukina, M. S., Krivoruchko, A. V., Elkin, A. A., Makarov, S. O., Cunningham, C. J., Peshkur, T. A., Atlas, R. M., & Philp, J. C. (2015). Oil spill problems and sustainable response strategies through new technologies. Environmental Science: Processes & Impacts, 17, 1201–1219. https://doi.org/10.1039/c5em00070j (accessed 24 Feb 2023).

  • Jednak, T., Avdalović, J., Miletić, S., Slavković-Beškoski, L., Stanković, D., Milić, J., Ilić, M., Beškoski, V., Gojgić-Cvijović, G., & Vrvić, M. M. (2017). Transformation and synthesis of humic substances during bioremediation of petroleum hydrocarbons. International Biodeterioration & Biodegradation, 122, 47–52. https://doi.org/10.1016/j.ibiod.2017.04.009 (accessed 24 Feb 2023).

  • Jørgensen, K. S. (2011). In situ bioremediation. In S. A. Elias (Ed), Reference module in earth systems and environmental sciences: Comprehensive biotechnology (2nd edn, Volume 6, pp. 69–67). Academic Press, Elsevier BV. https://doi.org/10.1016/B978-0-08-088504-9.00372-X (accessed 24 Feb 2023).

  • Jovančićević, B., Antić, M., Šolević, T., Vrvić, M. M., Kronimus, A., & Schwarzbauer, J. (2005). Investigation of interactions between surface water and petroleum type pollutant. Environmental Science and Pollution Research, 12, 205–212. https://doi.org/10.1065/espr2004.12.229 (accessed 9 Dec 2022).

  • Kaur-Sidhu, M., Ravindra, K., Mor, S., John, S., & Aggarwal, A. N. (2019). Respiratory health status of rural women exposed to liquefied petroleum gas and solid biomass fuel emissions. Air, Soil and Water Research, 12, 1–8. https://doi.org/10.1177/1178622119874314 (accessed 24 Feb 2023).

  • Kebria, D., Yousefi, A., Badkoubi, A., & Amoozegar, M. A. (2009). Isolation and characterization of a novel native Bacillus strain capable of degrading diesel fuel. International Journal of Environmental Science & Technology, 6, 435–442. (accessed 10 Nov 2023).

  • Kennish, M. J. (1996). Practical handbook of estuarine and marine pollution (p. 33431). CRC Press.

    Google Scholar 

  • Khalil, C. A., Fortin, N., Prince, R. C., Greer, C. W., Lee, K., & Boufade, M. C. (2021). Crude oil biodegradation in upper and supratidal seashores. Journal of Hazard Materials, 416, 125919. https://doi.org/10.1016/j.jhazmat.2021.125919 (accessed 24 Feb 2023).

  • Khanpour-Alikelayeh, E., Partovinia, A., Talebi, A., & Kermanian, H. (2020). Investigation of Bacillus licheniformis in the biodegradation of Iranian heavy crude oil: A two-stage sequential approach containing factor-screening and optimization. Ecotoxicology and Environmental Safety, 205, 111103. https://doi.org/10.1016/j.ecoenv.2020.111103. (accessed 10 Nov 2023).

  • Kim, S., Vermeulen, R., Waidyanatha, S., Johnson, B. A., Lan, Q., Smith, M. T., Luoping, Z., Guilan, L., Min, S., Yin, S., Rothman, N., & Rappaport, S. M. (2006). Modeling human metabolism of benzene following occupational and environmental exposures. Cancer Epidemiology Biomarkers & Prevention, 15, 2246–2252. https://doi.org/10.1158/1055-9965.epi-06-0262 (accessed 24 Feb 2023).

  • Kour, D., Kaur, T., Devi, R., Yadav, A., Singh, M., Joshi, D., Singh, J., Suyal, D. C., Kumar Rajput, A., Vishnu, D., Yadav, A. N., Singh, K., Singh, J., Sayyed Riyaz, Z., Arora Saxena, N. K., & Anil, K. (2021). Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: Present status and future challenges. Environmental Science and Pollution Research, 28, 24917–24939. https://doi.org/10.1007/s11356-021-13252-7 (accessed 24 Feb 2023).

  • Kponee, K. Z., Chiger, A., Kakulu, I. I., Vorhees, D., & Heiger-Bernays, W. (2015). Petroleum contaminated water and health symptoms: A cross-sectional pilot study in a rural Nigerian community. Environmental Health, 1, 86. https://doi.org/10.1186/s12940-015-0073-0 (accessed 24 Feb 2023).

  • Krishnani, K. K., Shekhar, M. S., Gopikrishna, G., & Gupta, B. P. (2009). Molecular biological characterization and biostimulation of ammonia-oxidizing bacteria in brackishwater aquaculture. Journal of Environmental Science and Health, Part A, 44, 1598–1608. https://doi.org/10.1080/10934520903263637 (accessed 24 Feb 2023).

  • Kuburović, N., Todorović, M., Raičević, V., Orlović, A., Jovanović, Lj., Nikolić, J., Kuburović Drmanić, V. S., & Šolević, T. (2007). Removal of methyl tertiary butyl ether from wastewaters using photolytic, photocatalytic and microbiological degradation processes. Desalination, 213, 123–128. https://doi.org/10.1016/j.desal.2006.03.605 (accessed 24 Feb 2023).

  • Küchen, C., & Spitzmüller, K. (2012). Heating Oil. In Ullmann’s encyclopedia of industrial chemistry, vol. 25. Wiley-VCH Verlag GmbH & Co. KGaA., pp. 207–261. https://doi.org/10.1002/14356007.a12_617.pub2 (accessed 10 Nov 2023).

  • Kweku, D. W., Bismark, O., Maxwell, A., Desmond, K. A., Danso, K. B., Oti-Mensah, E. A., Quachie, A. T., & Adormaa, B. B. (2017). Greenhouse effect: Greenhouse gases and their impact on global warming. Journal of Scientific Research and Reports, 17, 1-9 https://doi.org/10.9734/JSRR/2017/39630 (accessed 24 Feb 2023).

  • Lapointe, M., Rochman, C. M., & Tufenkji, N. (2022). Sustainable strategies to treat urban runoff needed. Nature Sustainability, 5, 366–369. https://doi.org/10.1038/s41893-022-00853-4 (accessed 24 Feb 2023).

  • Lješević, M., Milić, J., Gojgić-Cvijović, G., Šolević-Knudsen, T., Ilić, M., Avdalović, J., & Vrvić, M. M. (2020) Evaluation of assays for screening polycyclic aromatic hydrocarbon-degrading potential of bacteria. Chemical Industry and Chemical Engineering Quarterly, 26, 41–48. https://doi.org/10.2298/CICEQ190220023L (accessed 10 Nov 2023).

  • López, J. C., Quijano, G., Souza, T. S., Estrada, J. M., Lebrero, R., & Muñoz, R. (2013). Biotechnologies for greenhouse gases (CH4, N2O, and CO2) abatement: State of the art and challenges. Applied Microbiology and Biotechnology, 97, 2277–2303. https://doi.org/10.1007/s00253-013-4734-z (accessed 24 Feb 2023).

  • Mackay, D., & Matsugu, R. S. (1973). Evaporation rates of liquid hydrocarbon spills on land and water. The Canadian Journal of Chemical Engineering, 51, 434–439. https://doi.org/10.1002/cjce.5450510407 (accessed 24 Feb 2023).

  • Margesin, R. (2009). Cold active enzymes as new tools in biotechnology. In C. Gerday & N. Glansdorff (Eds.), Extremophiles (vol. II, pp. 164–183). UNESCO-EOLSS Publications.

  • McMahon, K. D., Martin, H. G., & Hugenholtz, P. (2007). Integrating ecology into biotechnology. Current Opinion in Biotechnology, 18, 287–292. https://doi.org/10.1016/j.copbio.2007.04.007 (accessed 24 Feb 2023).

  • Milić, J. (2011). Biochemical characterisation of hydrocarbon-degrading bacteria isolated from environments with petroleum contaminants. PhD thesis, pp. 119–162. (in Serbian).

  • Milić, J., Beškoski, V., Ilić, M., Ali, S. A. M., Gojgić-Cvijović, G., & Vrvić, M. M. (2009). Bioremediation of soil heavily contaminated with crude oil and its products: Composition of the microbial consortium. Journal of the Serbian Chemical Society, 74, 455–460. https://doi.org/10.2298/JSC0904455M (accessed 24 Feb 2023).

  • Milić, J., Avdalović, J., Šolević-Knudsen, T., Gojgić-Cvijović, G., Jednak, T., & Vrvić, M. M. (2016). Initial microbial degradation of polycyclic aromatic hydrocarbons. Chemical Industry & Chemical Engineering Quarterly, 22, 293−299. https://doi.org/10.2298/CICEQ150606043M (accessed 24 Feb 2023).

  • Morseletto, P. (2020). Restorative and regenerative: Exploring the concepts in the circular economy. Journal of Industrial Ecology, 24, 763–773. https://doi.org/10.1111/jiec.12987 (accessed 24 Feb 2023).

  • Mudhoo, A., & Mohee, R. (2012). Elements of Sustainability and Bioremediation. In: R. Mohee & A. Mudhoo (Eds.), Bioremediation and Sustainability (pp. 1–42). Co-published by John Wiley & Sons, Inc Hoboken, New Jersey, and Scrivener Publishing LLC, Salem, Massachusetts.

  • Nascimento, A. L., Souza, A. J., Andrade, P. A. M., Andreote, F. D., Coscione, A. R., Oliveira, F. C., & Regitano, J. B. (2018). Sewage sludge microbial structures and relations to their sources, treatments, and chemical attributes. Frontiers in Microbiology, 9, 1462. https://doi.org/10.3389/fmicb.2018.01462 (accessed 24 Feb 2023).

  • NRC. (2000). National Research Council, Committee on Oil in the Sea (NRC), Oil in the Sea III: Inputs, fates, and effects. National Research Council, Ocean Studies Board and Marine Board, Divisions of Earth and Life Studies and Transportation Research Board. National Academy Press. https://doi.org/10.17226/10388 (accessed 24 Feb 2023).

  • Ogunbayo, A. O., Olanipekun, O. I., & Adamu, A. (2019). Preliminary studies on the microbial degradation of plastic waste using Aspergillus niger and Pseudomonas sp. Journal of Environmental Protection, 10, 625–631. https://doi.org/10.4236/jep.2019.105037 (accessed 24 Feb 2023).

  • Olabemiwo, O. M., Adediran, G. O., Adekola, F. A., Adelowo, O. O., & Alajjire, A. A. (2014). Biodegradation of hydrocarbon compounds in Agbabu natural bitumen. African Journal of Biotechnology, 13, 1257–1264. https://doi.org/10.5897/AJB2013.12974 (accessed 10 Nov 2023).

  • OPEC. (2017, October). Organization of the Petroleum Exporting Countries (OPEC) World Oil Out-look. https://www.opec.org/opec_web/flipbook/WOO2017/WOO2017/assets/common/downloads/WOO%202017.pdf (accessed 24 Feb 2023).

  • Palos, R., Gutiérrez, A., Vela, F. J., Olazar, M., Arandes, J. M., & Bilbao, J. (2021). Waste refinery: The valorization of waste plastics and end-of-life tires in refinery units. Energy Fuels, 35, 3529–3557. https://doi.org/10.1021/acs.energyfuels.0c03918 (accessed 24 Feb 2023).

  • Peters K. E., Walters C. C., & Moldowan J. M. (2005). The biomarker guide. Volume 2: Biomarkers and isotopes in petroleum systems and earth history, 2nd edn. Cambridge University Press.

  • Prüss-Ustün, A., Wolf, J., Bartram, J., Clasen, T., Cumming, O., Freeman, M. C., Gordon, B., Hunter, P. R., Medlicott, K., & Johnston, R. (2019). Burden of disease from inadequate water, sanitation and hygiene for selected adverse health outcomes: An updated analysis with a focus on low- and middle-income countries. International Journal of Hygiene and Environmental Health, 222, 765–777. https://doi.org/10.1016/j.ijheh.2019.05.004 (accessed 24 Feb 2023).

  • Raghoebarsing, A. A., Smolders, A. J. P., Schmid, M. C., Rijpstra, W. C., Wolters-Arts, M., Derksen, J., Jetten, M. S. M., Schouten, S., Sinninghe Damste, J. S., Lamers, L. P. M., Roelofs, J. G. M., Op den Camp, H. J. M., & Strous, M. (2005). Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature, 436, 1153–1156. https://doi.org/10.1038/nature03802 (accessed 24 Feb 2023).

  • Rajasulochana, P., & Preethy, V. (2016). Comparison on efficiency of various techniques in treatment of waste and sewage water – A comprehensive review. Resource-Efficient Technologies, 2, 175–184. https://doi.org/10.1016/j.reffit.2016.09.004 (accessed 24 Feb 2023).

  • Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T. J., Kidd, K. A., MacCormack, T. J., Olden, J. D., Ormerod, S. J., Smol, J. P., Taylor, W. W., Tockner, K., Vermaire, J. C., Dudgeon, D., & Cooke, S. J. (2019). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews of the Cambridge Philosophical Society, 94, 849–873. https://www.ncbi.nlm.nih.gov/pubmed/30467930 (accessed 24 Feb 2023).

  • Rhasa, D., & Zellner, R. (1986). Atmospheric oxidation of hydrocarbons. Free Radical Research, 3, 199–209. https://doi.org/10.3109/10715768709069785 (accessed 24 Feb 2023).

  • Rodionova, E., Kuzminykh, Z., & Gamova, E. (2020). Assessing the role of the framework programmes for research and innovation ‘Horizon 2020’ and ‘Horizon Europe’ in sustainable development of the European Union. In E3S Web Conf. 208: 08025 First Conference on Sustainable Development: Industrial Future of Territories (IFT 2020). https://doi.org/10.1051/e3sconf/202020808025 (accessed 24 Feb 2023).

  • Salmazo, P., De Marco, N., Soeiro, V. S. Castanho, N. R. C. M., Leite, F. G., Chaud, M. V., Grotto, D., & Jozala, A. F. (2023). Evaluation of Bacillus subtilis as a tool for biodegrading diesel oil and gasoline in experimentally contaminated water and soil. Current Microbiology, 30, 1432–0991. https://doi.org/10.1007/s00284-022-03175-y (accessed 10 Nov 2023).

  • Schmidt-Etkin, D. (2011). Spill occurrences: A world overview. In M. Fingas (Ed.), Oil Spill (pp. 7–48). Sci Tech Elsevier Inc. https://doi.org/10.1016/B978-1-85617-943-0.10002-4 (accessed 24 Feb 2023).

  • Seagren, E. A. (2024). Bioremediation. In Wexler, P. J. (Ed.), Encyclopedia of Toxicology (Fourth Edition) (pp. 145–159). Academic Press. https://doi.org/10.1016/B978-0-12-824315-2.00413-9 (accessed 10 Nov 2023).

  • Seviour, R., & Nielsen, P. H. (2010). Microbial ecology of activated sludge (pp. 453–489). IWA Publishing. URL: https://www.iwapublishing.com/books/9781843390329/microbial-ecology-activated-sludge (accessed 24 Feb 2023).

  • Sharma, S. R. (2018). Bioremediation of polythenes and plastics: A microbial approach. In R. Prasad & E. Aranda (Eds), Approaches in bioremediation (pp. 97–114). Nanotechnology in the Life Sciences. Springer. https://doi.org/10.1007/978-3-030-02369-0_6 (accessed 24 Feb 2023).

  • Shewfelt, K., Lee, H., & Zytner, R. G. (2005). Optimization of nitrogen for bioventing of gasoline contaminated soil. Journal of Environmental Engineering and Science, 1, 29–42. https://doi.org/10.1139/s04-040 (accessed 24 Feb 2023).

  • Short, J. W., & Springman, K. R. (2016). Identification of hydrocarbons in biological samples for source determination. In S. A. Stout & Z. Wang (Eds.), Standard handbook oil spill environmental forensics (pp. 1039–1069) Academic Press, Elsevier Inc. https://doi.org/10.1016/B978-0-12-803832-1.00024-6 (accessed 9 Dec 2022).

  • Šolević, T., Jovančićević, B., Vrvić, M., & Wehner, H. (2003). Oil pollutants in alluvial sediments - the influence of contact with ground waters on effect of microorganisms. Journal of the Serbian Chemical Society, 68, 227–234. https://doi.org/10.2298/JSC0303227S (accessed 24 Feb 2023).

  • Šolević, T., Stojanović, K., Bojesen-Koefoed, J., Nytoft, H.P., Jovančićević, B, & Vitorović, D. K. (2008). Origin of oils in the Velebit oil–gas field, SE Pannonian Basin, Serbia – Source rocks characterization based on biological marker distributions. Organic Geochemistry, 39, 118–134. https://doi.org/10.1016/j.orggeochem.2007.09.003 (accessed 24 Feb 2023).

  • Sorci, G., & Loiseau, C. (2022). Should we worry about the accumulation of microplastics in human organs? Lancet, 82, 1–2. https://doi.org/10.1016/j.ebiom.2022.104191 (accessed 24 Feb 2023).

  • Speight, J. G. (2006). The chemistry and technology of petroleum. CRC Press, Taylor & Francis Group.

  • Speight, J. G. (2011). Handbook of industrial hydrocarbon processes. Elsevier Inc.

  • Speight, J. G., & El-Gendy, N. S. (2018). Introduction to petroleum biotechnology. Gulf Professional Publishing, Elsevier.

  • Srivastava, S. (2015). Bioremediation technology: A greener and sustainable approach for restoration of environmental pollution. In G. Kaushik (Ed.), Applied environmental biotechnology: Present scenario and future trends. Springer.

  • Stępniewska, Z., & Kuźniar, A. (2013). Endophytic microorganisms - promising applications in bioremediation of greenhouse gases. Applied Microbiology and Biotechnology, 97, 9589–9596. https://doi.org/10.1007/s00253-013-5235-9 (accessed 10 Nov 2023).

  • Stępniewska, Z., Goraj, W., Kuźniar, A., et al. (2018). Methane oxidation by endophytic bacteria inhabiting Sphagnum sp. and some vascular plants. Wetlands, 38, 411–422. https://doi.org/10.1007/s13157-017-0984-3 (accessed 10 Nov 2023).

  • The Royal Society. (2010). Climate change: A summary of the science (p. 13). The Royal Society Science Policy Centre. https://royalsociety.org/-/media/Royal_Society_Content/policy/publications/2010/4294972962.pdf (accessed 24 Feb 2023).

  • Tsai, Y. J. (2008). Air distribution and size changes in the remediated zone after air sparging for soil particle movement. Journal of Hazardous Materials, 158, 438–444. https://doi.org/10.1016/j.jhazmat.2008.01.089 (accessed 24 Feb 2023).

  • UN General Assembly. (2015). Transforming our world: The 2030 Agenda for Sustainable Development, 21 October 2015, A/RES/70/1 URL: https://www.refworld.org/docid/57b6e3e44.html (accessed 24 Feb 2023).

  • UN. (2015a). United Nations (2015a) Fact Sheets Sustainble Developpment Goals. URL: https://www.un.org/sustainabledevelopment/why-the-sdgs-matter/ (accessed 24 Feb 2023).

  • UN. (2015b). United Nations (2015b) Transforming our World: The 2030 Agenda for Sustainable Development A/RES/70/1. URL: https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf (accessed 24 Feb 2023).

  • UN. (2015c). United Nations - Why it matters: Clean Water and Sanitation – Fact Sheets URL: https://www.un.org/sustainabledevelopment/wp-content/uploads/2018/09/Goal-6.pdf (accessed 24 Feb 2023).

  • UN. (2015d). United Nations - Why it matters: Responsible Consumption and Production – Fact Sheets URL: https://www.un.org/sustainabledevelopment/wp-content/uploads/2019/07/12_Why-It-Matters-2020.pdf (accessed 24 Feb 2023).

  • UN. (2015e). United Nations - Why it matters: Climate Action – Fact Sheets. URL: https://www.un.org/sustainabledevelopment/wp-content/uploads/2019/07/13_Why-It-Matters-2020.pdf (accessed 24 Feb 2023).

  • UN. (2015f). United Nations - Why it matters: Life Below Water – Fact Sheets URL: https://www.un.org/sustainabledevelopment/wp-content/uploads/2019/07/14_Why-It-Matters-2020.pdf (accessed 24 Feb 2023).

  • UN. (2015g). United Nations - Why it matters: Life on Land – Fact Sheets. URL: https://www.un.org/sustainabledevelopment/wp-content/uploads/2019/07/15_Why-It-Matters-2020.pdf (accessed 24 Feb 2023).

  • UN. (2016). United Nations - The Sustainable Development Goals Report 2016. New York USA, pp. 12–50 URL: https://www.unodc.org/documents/commissions/CND_CCPCJ_joint/2030Agenda/The_Sustainable_Development_Goals_Report_2016.pdf (accessed 24 Feb 2023).

  • UNICEF/WHO. (2009). UNICEF and World Health Organization (2009) Diarrhoea: Why children are still dying and what can be done. The United Nations Children’s Fund (UNICEF)/World Health Organization (WHO) 1-44/ URL: https://apps.who.int/iris/rest/bitstreams/52546/retrieve (accessed 24 Feb 2023).

  • US EPA. (2000). United States Environmental Protection Agency (US EPA) Office of Transportation and Air Quality: Average Annual Emissions and Fuel Consumption for Passenger Cars and Light Trucks. EPA420-F-00-013. URL: https://nepis.epa.gov/Exe/ZyPDF.cgi/P100EVXP.PDF?Dockey=P100EVXP.PDF (accessed 24 Feb 2023).

  • USEIA. (2019). U.S. Energy Information Administration (USEIA) Independent statistics & analysis; Oil: Crude and Petroleum Products Explained Use of Oil. 1000 Independence Ave., SW; Washington, DC 20585; URL: https://www.eia.gov/energyexplained/index.php?page=oil_use (accessed 24 Feb 2023).

  • Varjani, S. J. (2017). Microbial degradation of petroleum hydrocarbons. Bioresource Technology, 223, 277–286. https://doi.org/10.1016/j.biortech.2016.10.037 (accessed 24 Feb 2023).

  • Villela, H. D. M., Peixoto, R. S., Soriano, A. U., & Carmo, F. L. (2019). Microbial bioremediation of oil contaminated seawater: A survey of patent deposits and the characterization of the top genera applied. Science of the Total Environment, 666, 743–758. https://doi.org/10.1016/j.scitotenv.2019.02.153 (accessed 24 Feb 2023).

  • Vuono, D. C., Benecke, J., Henkel, J., Navidi, W. C., Cath, T. Y., Munakata-Marr, J., Spear, J. R., & Drewes, J. E. (2015). Disturbance and temporal partitioning of the activated sludge metacommunity. The ISME Journal, 9, 425–435. https://doi.org/10.1038/ismej.2014.139 (accessed 24 Feb 2023).

  • Wai-Hong, L., Jun-Wei, L., Man-Kee, L., Yoshimitsu, U., Chii-Dong, H., Yeek-Chia, H. (2018). Co-cultivation of activated sludge and microalgae for the simultaneous enhancements of nitrogen-rich wastewater bioremediation and lipid production. Journal of the Taiwan Institute of Chemical Engineers, 87, 216–224. https://doi.org/10.1016/j.jtice.2018.03.038 (accessed 24 Feb 2023)

  • Wake, H. (2005). Oil refineries: A review of their ecological impacts on the aquatic environment, in Estuarine. Coastal and Shelf Science, 62, 131–140. https://doi.org/10.1016/j.ecss.2004.08.013 (accessed 24 Feb 2023).

  • Wang, C., He, S., Zou, Y., Liu, J., Zhao, R., Yin, X., Zhang, H., & Li, Y. (2020). Quantitative evaluation of in-situ bioremediation of compound pollution of oil and heavy metal in sediments from the Bohai Sea, China. Marine Pollution Bulletin, 150, 110787. ISSN 0025-326X. https://doi.org/10.1016/j.marpolbul.2019.110787 (accessed 10 Nov 2023).

  • Wu, B., Guo, S., & Wang, J. (2021). Assessment of the human health risk of polycyclic aromatic hydrocarbons in soils from areas of crude oil exploitation. Environmental Research, 193, 110617. https://doi.org/10.1016/j.envres.2020.110617 (accessed 24 Feb 2023).

  • Yamada-Onodera, K., Mukumoto, H., Katsuyaya,Y., Saiganji, A., & Tani, Y. (2001). Degradation of polyethylene by a fungus Penicillus simplicissimus YK. Polymer Degradation and Stability, 72, 323–327 https://doi.org/10.1016/S0141-3910(01)00027-1 (accessed 24 Feb 2023).

  • Yang, M., Zhang, B., Xin, X., Lee, K., & Chen, B. (2022). Microplastic and oil pollution in oceans: Interactions and environmental impacts. Science of the Total Environment, 838, 156142 https://doi.org/10.1016/j.scitotenv.2022.156142 (accessed 24 Feb 2023).

  • Žerađanin, A., Avdalović, J., Lješević, M., Tešić, O., Miletić, S., Vrvić, M. M., & Beškoski, V. (2020). Evolution of humic acids during ex situ bioremediation on a pilot level – an added value of the microbial activity. Journal of the Serbian Chemical Society, 85, 821–830. https://doi.org/10.2298/JSC190916131Z (accessed 24 Feb 2023).

  • Zhu, Z., Merlin, F., Yang, M,. Lee, K., Chen, B., Liu, B., Cao, Y., Song, X., Ye, X., Li, Q. K., Greer, C. W., Boufadel, M. C., Isaacman, L., & Zhang, B. (2022). Recent advances in chemical and biological degradation of spilled oil: A review of dispersants application in the marine environment. Journal of Hazardous Materials, 436, 129260 https://doi.org/10.1016/j.jhazmat.2022.129260 (accessed 24 Feb 2023).

Download references

Acknowledgements

This research was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract number 451-03-68/2022-14/200026).

Funding

This research was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract number 451-03-68/2022-14/200026).

Author information

Authors and Affiliations

Authors

Contributions

JM: Writing—Original Draft, Corresponding, Conceptualization, Investigation. JA: Writing—Review & Editing. TŠK: Writing-Original Draft, Conceptualization, Investigation.

Corresponding author

Correspondence to Jelena Milić.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milić, J., Avdalović, J. & Knudsen, T.Š. Microbial bioremediation of the oil polluted environment and the sustainable development goals of pillar Planet of the Agenda 2030. Environ Dev Sustain (2024). https://doi.org/10.1007/s10668-024-04848-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-024-04848-3

Keywords

Navigation