Skip to main content
Log in

Artificial intelligence (AI) advancements for transportation security: in-depth insights into electric and aerial vehicle systems

  • Review
  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The transformative advancements in transportation technology have brought forth electric and aerial vehicles (EnAVs) as revolutionizing modes of mobility. However, amidst the transformative potential of these vehicles, novel security challenges have emerged, demanding innovative solutions. This review paper delves into the critical intersection of artificial intelligence (AI) and transportation security, with a focus on EnAVs. It meticulously examines the evolving threat landscape within transportation technology and sheds light on the vulnerabilities inherent in these advanced vehicles. AI is positioned as a promising approach to address these challenges. This paper comprehensively explores the role of AI in enhancing security, encompassing image and video analysis for vehicle surveillance, natural language processing for cybersecurity, and reinforcement learning for decision-making and control. Additionally, it presents real-world applications of AI techniques, including intrusion detection, object tracking, sensor fusion, and predictive maintenance. Peering into the future, this review discusses the prospective horizons of AI in transportation security, including its integration with autonomous vehicles and the potential ramifications of quantum computing. By critically examining existing research, identifying gaps, and proposing directions for future exploration, this paper contributes to a holistic understanding of how AI can fortify the security of EnAVs, thus paving the way for safer and more resilient transportation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availibility

Not applicable.

References

  • Abu Al-Haija, Q., & Al Badawi, A. (2022). High-performance intrusion detection system for networked UAVS via deep learning. Neural Computing and Applications, 34(13), 10885–10900.

    Article  Google Scholar 

  • Adil, M., Ali, J., Ta, Q. T. H., Attique, M., & Chung, T. S. (2020). A reliable sensor network infrastructure for electric vehicles to enable dynamic wireless charging based on machine learning technique. IEEE Access, 8, 187933–187947.

    Article  Google Scholar 

  • Ahn, H. (2020). Deep learning based anomaly detection for a vehicle in swarm drone system. In 2020 international conference on unmanned aircraft systems (ICUAS), (pp. 557–561). IEEE

  • Ahn, H., Choi, H. L., Kang, M., & Moon, S. (2019). Learning-based anomaly detection and monitoring for swarm drone flights. Applied Sciences, 9(24), 5477.

    Article  Google Scholar 

  • Al-Rubaye, S., Tsourdos, A., & Namuduri, K. (2023). Advanced air mobility operation and infrastructure for sustainable connected evtol vehicle. Drones, 7(5), 319.

    Article  Google Scholar 

  • Algarni, A., & Thayananthan, V. (2022). Autonomous vehicles: The cybersecurity vulnerabilities and countermeasures for big data communication. Symmetry, 14(12), 2494.

    Article  Google Scholar 

  • Alqahtani, H., & Kumar, G. (2022). A deep learning-based intrusion detection system for in-vehicle networks. Computers and Electrical Engineering, 104, 108447.

    Article  Google Scholar 

  • Alqahtani, H., & Kumar, G. (2024). Machine learning for enhancing transportation security: A comprehensive analysis of electric and flying vehicle systems. Engineering Applications of Artificial Intelligence, 129, 107667.

    Article  Google Scholar 

  • Antoun, J., Kabir, M. E., Moussa, B., Atallah, R., & Assi, C. (2020). A detailed security assessment of the EV charging ecosystem. IEEE Network, 34(3), 200–207.

    Article  Google Scholar 

  • Aslan, Ö., Aktuğ, S. S., Ozkan-Okay, M., Yilmaz, A. A., & Akin, E. (2023). A comprehensive review of cyber security vulnerabilities, threats, attacks, and solutions. Electronics, 12(6), 1333.

    Article  Google Scholar 

  • Aydin, B. (2019). Public acceptance of drones: Knowledge, attitudes, and practice. Technology in society, 59, 101180.

    Article  Google Scholar 

  • Baig, Z., Syed, N., & Mohammad, N. (2022). Securing the smart city airspace: Drone cyber attack detection through machine learning. Future Internet, 14(7), 205.

    Article  Google Scholar 

  • Basnet, M., & Ali, M. H. (2020). Deep learning-based intrusion detection system for electric vehicle charging station. In 2020 2nd international conference on smart power and internet energy systems (SPIES), (pp. 408–413). IEEE

  • Beecroft, M. (2019). The future security of travel by public transport: A review of evidence. Research in Transportation Business & Management, 32, 100388.

    Article  Google Scholar 

  • Belhadi, A., Djenouri, Y., Srivastava, G., Djenouri, D., Cano, A., & Lin, J. C. W. (2020). A two-phase anomaly detection model for secure intelligent transportation ride-hailing trajectories. IEEE Transactions on Intelligent Transportation Systems, 22(7), 4496–4506.

    Article  Google Scholar 

  • Bell, V., Rengasamy, D., Rothwell, B., & Figueredo, G. P. (2022). Anomaly detection for unmanned aerial vehicle sensor data using a stacked recurrent autoencoder method with dynamic thresholding. arXiv preprint arXiv:2203.04734

  • Bera, B., Das, A. K., & Sutrala, A. K. (2021). Private blockchain-based access control mechanism for unauthorized UAV detection and mitigation in internet of drones environment. Computer Communications, 166, 91–109.

    Article  Google Scholar 

  • Bharadiya, J. (2023). Machine learning in cybersecurity: Techniques and challenges. European Journal of Technology, 7(2), 1–14.

    Article  Google Scholar 

  • Bıçakcı, A. S., & Evren, A. G. (2022). Thinking multiculturality in the age of hybrid threats: Converging cyber and physical security in akkuyu nuclear power plant. Nuclear Engineering and Technology, 54(7), 2467–2474.

    Article  Google Scholar 

  • Bouhamed, O., Bouachir, O., Aloqaily, M., & Al Ridhawi, I. (2021). Lightweight ids for UAV networks: A periodic deep reinforcement learning-based approach. In 2021 IFIP/IEEE international symposium on integrated network management (IM), (pp. 1032–1037). IEEE

  • Bronz, M., Baskaya, E., Delahaye, D., & Puechmore, S. (2020). Real-time fault detection on small fixed-wing UAVS using machine learning. In 2020 AIAA/IEEE 39th digital avionics systems conference (DASC), (pp. 1–10). IEEE

  • Bylykbashi, K., Qafzezi, E., Ikeda, M., Matsuo, K., & Barolli, L. (2020). Fuzzy-based driver monitoring system (FDMS): Implementation of two intelligent FDMSS and a testbed for safe driving in vanets. Future Generation Computer Systems, 105, 665–674.

    Article  Google Scholar 

  • Chohan, M. N., Haider, U., Ayub, M. Y., Shoukat, H., Bhatia, T. K., Hassan, M. F. U. (2023). Detection of cyber attacks using machine learning based intrusion detection system for IoT based smart cities. EAI Endorsed Transactions on Smart Cities 7(2)

  • Chriki, A., Touati, H., Snoussi, H., & Kamoun, F. (2020). UAV-based surveillance system: An anomaly detection approach. In 2020 IEEE Symposium on computers and communications (ISCC), (pp. 1–6). IEEE

  • Chriki, A., Touati, H., Snoussi, H., & Kamoun, F. (2021). Deep learning and handcrafted features for one-class anomaly detection in UAV video. Multimedia Tools and Applications, 80, 2599–2620.

    Article  Google Scholar 

  • Dementiiuk, H., Iasechko, M., Bazilo, S., Trofimov, I., Horbachov, K., Riazantsev, S., Lutsyshyn, A., & Zaitsev, I. (2023). Analysis of the destructive impact of attack drones on critical civil infrastructure: A combined method of protection based on the application of an electromagnetic shield. Scandinavian Journal of Information Systems, 35(1), 29–37.

    Google Scholar 

  • Dey, S., & Khanra, M. (2020). Cybersecurity of plug-in electric vehicles: Cyberattack detection during charging. IEEE Transactions on Industrial Electronics, 68(1), 478–487.

    Article  Google Scholar 

  • Dhirani, L. L., Armstrong, E., & Newe, T. (2021). Industrial IoT, cyber threats, and standards landscape: Evaluation and roadmap. Sensors, 21(11), 3901.

    Article  Google Scholar 

  • Doshi, K., Yilmaz, Y. (2020). Continual learning for anomaly detection in surveillance videos. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, (pp. 254–255)

  • Doust, M., & Otkur, M. (2023). Carbon footprint comparison analysis of passenger car segment electric and ice-propelled vehicles in Kuwait. Alexandria Engineering Journal, 79, 438–448.

    Article  Google Scholar 

  • ElKashlan, M., Aslan, H., Said Elsayed, M., Jurcut, A. D., & Azer, M. A. (2023). Intrusion detection for electric vehicle charging systems (EVCS). Algorithms, 16(2), 75.

    Article  Google Scholar 

  • Escorcia-Gutierrez, J., Gamarra, M., Leal, E., Madera, N., Soto, C., Mansour, R. F., Alharbi, M., Alkhayyat, A., & Gupta, D. (2023). Sea turtle foraging algorithm with hybrid deep learning-based intrusion detection for the internet of drones environment. Computers and Electrical Engineering, 108, 108704.

    Article  Google Scholar 

  • Gao, Q., Lei, T., Deng, F., Min, Z., Yao, W., & Zhang, X. (2022). A deep reinforcement learning based energy management strategy for fuel-cell electric UAV. In 2022 international conference on power energy systems and applications (ICoPESA), (pp. 524–530). IEEE

  • Guo, H., Liu, J., Dai, Q., Chen, H., Wang, Y., & Zhao, W. (2020). A distributed adaptive triple-step nonlinear control for a connected automated vehicle platoon with dynamic uncertainty. IEEE Internet of Things Journal, 7(5), 3861–3871.

    Article  Google Scholar 

  • Guo, L., Ye, J., & Yang, B. (2020). Cyberattack detection for electric vehicles using physics-guided machine learning. IEEE Transactions on Transportation Electrification, 7(3), 2010–2022.

    Article  Google Scholar 

  • Haritha, H., & Thangavel, S. K. (2021). A modified deep learning architecture for vehicle detection in traffic monitoring system. International Journal of Computers and Applications, 43(9), 968–977.

    Article  Google Scholar 

  • Heidari, A., Jafari Navimipour, N., Unal, M., & Zhang, G. (2023). Machine learning applications in internet-of-drones: Systematic review, recent deployments, and open issues. ACM Computing Surveys, 55(12), 1–45.

    Article  Google Scholar 

  • Hou, Y. C., Mohamed Sahari, K. S., Weng, L. Y., Foo, H. K., Abd Rahman, N. A., Atikah, N. A., & Homod, R. Z. (2020). Development of collision avoidance system for multiple autonomous mobile robots. International Journal of Advanced Robotic Systems, 17(4), 1729881420923967.

    Article  Google Scholar 

  • Hsieh, Y. T., Anjum, K., Huang, S., Kulkarni, I., & Pompili, D. (2021). Hybrid analog-digital sensing approach for low-power real-time anomaly detection in drones. In 2021 IEEE 18th international conference on mobile ad hoc and smart systems (MASS), (pp. 446–454). IEEE.

  • Hu, Junyan, Bhowmick, Parijat, Arvin, Farshad, Lanzon, Alexander, & Lennox, Barry. (2020). Cooperative control of heterogeneous connected vehicle platoons: An adaptive leader-following approach. IEEE Robotics and Automation Letters, 5(2), 977–984. https://doi.org/10.1109/LRA.2020.2966412

    Article  Google Scholar 

  • Jahan, F., Sun, W., Niyaz, Q., & Alam, M. (2019). Security modeling of autonomous systems: A survey. ACM Computing Surveys (CSUR), 52(5), 1–34.

    Article  Google Scholar 

  • Jha, R. K. (2023). Strengthening smart grid cybersecurity: An in-depth investigation into the fusion of machine learning and natural language processing. Journal of Trends in Computer Science and Smart Technology, 5(3), 284–301. https://doi.org/10.36548/jtcsst.2023.3.005

    Article  Google Scholar 

  • Jia, M., Raja, A., & Yuan, J. (2023). A hybrid delay-aware approach towards UAV flight data anomaly detection. In 2023 international conference on computing, networking and communications (ICNC), (pp. 176–180). IEEE

  • Jung, Soyi, Yun, Won Joon, Shin, MyungJae, Kim, Joongheon, & Kim, Jae-Hyun. (2021). Orchestrated scheduling and multi-agent deep reinforcement learning for cloud-assisted multi-UAV charging systems. IEEE Transactions on Vehicular Technology, 70(6), 5362–5377. https://doi.org/10.1109/TVT.2021.3062418

    Article  Google Scholar 

  • Kateb, F., & Ragab, M. (2023). Archimedes optimization with deep learning based aerial image classification for cybersecurity enabled UAV networks. Computer Systems Science and Engineering 47(2)

  • Kaur, R., Sachdeva, M., & Kumar, G. (2016). Nature inspired feature selection approach for effective intrusion detection. Indian Journal of Science and Technology, 9(42), 1–9.

    Article  Google Scholar 

  • Kellermann, R., Biehle, T., & Fischer, L. (2020). Drones for parcel and passenger transportation: A literature review. Transportation Research Interdisciplinary Perspectives, 4, 100088.

    Article  Google Scholar 

  • Khalid, A., Sundararajan, A., Hernandez, A., & Sarwat, A. I. (2019). Facts approach to address cybersecurity issues in electric vehicle battery systems. In 2019 IEEE technology and engineering management conference (TEMSCON), (pp. 1–6). IEEE

  • Khan, M. A., Ullah, I., Alkhalifah, A., Rehman, S. U., Shah, J. A., Uddin, M. I., Alsharif, M. H., & Algarni, F. (2021). A provable and privacy-preserving authentication scheme for UAV-enabled intelligent transportation systems. IEEE Transactions on Industrial Informatics, 18(5), 3416–3425.

    Article  Google Scholar 

  • Khodadadi, A., Ghandiparsi, S., & Chuah, C. N. (2022). A natural language processing and deep learning based model for automated vehicle diagnostics using free-text customer service reports. Machine Learning with Applications, 10, 100424.

    Article  Google Scholar 

  • Kulkarni, N. N., Raisi, K., Valente, N. A., Benoit, J., Yu, T., & Sabato, A. (2023). Deep learning augmented infrared thermography for unmanned aerial vehicles structural health monitoring of roadways. Automation in Construction, 148, 104784.

    Article  Google Scholar 

  • Kullu, O., & Cinar, E. (2022). A deep-learning-based multi-modal sensor fusion approach for detection of equipment faults. Machines, 10(11), 1105.

    Article  Google Scholar 

  • Kumar, A. S., Zhao, L., & Fernando, X. (2021). Multi-agent deep reinforcement learning-empowered channel allocation in vehicular networks. IEEE Transactions on Vehicular Technology, 71(2), 1726–1736.

    Article  Google Scholar 

  • Kumar, P., Gupta, G. P., Tripathi, R., Garg, S., & Hassan, M. M. (2021). Dltif: Deep learning-driven cyber threat intelligence modeling and identification framework in iot-enabled maritime transportation systems. IEEE Transactions on Intelligent Transportation Systems.

  • Kuznetsova, G., & Podbiralina, G. (2022). Transport digitalization. In Intelligent systems in digital transformation: Theory and applications, (pp. 579–608). Springer

  • Li, Y., Han, W., & Wang, Y. (2020). Deep reinforcement learning with application to air confrontation intelligent decision–making of manned/unmanned aerial vehicle cooperative system. IEEE Access, 8, 67887–67898.

    Article  Google Scholar 

  • Lin, H. C., Wang, P., Chao, K. M., Lin, W. H., & Chen, J. H. (2022). Using deep learning networks to identify cyber attacks on intrusion detection for in-vehicle networks. Electronics, 11(14), 2180.

    Article  Google Scholar 

  • Linkov, V., Zámečník, P., Havlíčková, D., & Pai, C. W. (2019). Human factors in the cybersecurity of autonomous vehicles: Trends in current research. Frontiers in Psychology, 10, 995.

    Article  Google Scholar 

  • Loukas, G., Vuong, T., Heartfield, R., Sakellari, G., Yoon, Y., & Gan, D. (2017). Cloud-based cyber-physical intrusion detection for vehicles using deep learning. Ieee Access, 6, 3491–3508.

    Article  Google Scholar 

  • Lu, X., Xiao, L., Dai, C., & Dai, H. (2020). UAV-aided cellular communications with deep reinforcement learning against jamming. IEEE Wireless Communications, 27(4), 48–53.

    Article  Google Scholar 

  • Luca, O., Andrei, L., Iacoboaea, C., & Gaman, F. (2023). Unveiling the hidden effects of automated vehicles on “do no significant harm’’ components. Sustainability, 15(14), 11265.

    Article  CAS  Google Scholar 

  • Lv, Z., Zhang, S., & Xiu, W. (2020). Solving the security problem of intelligent transportation system with deep learning. IEEE Transactions on Intelligent Transportation Systems, 22(7), 4281–4290.

    Article  Google Scholar 

  • Mahmud, I., Medha, M. B., & Hasanuzzaman, M. (2023). Global challenges of electric vehicle charging systems and its future prospects: A review. Research in Transportation Business and Management, 49, 101011.

    Article  Google Scholar 

  • Marinho, R., & Holanda, R. (2023). Automated emerging cyber threat identification and profiling based on natural language processing. IEEE Access.

  • Maulik, U., & Kundu, S. (2023). Automatic vehicle pollution detection using feedback based iterative deep learning. IEEE Transactions on Intelligent Transportation Systems, 24(5), 4804–4814.

    Article  Google Scholar 

  • Meyer, M. A., Granrath, C., Feyerl, G., Richenhagen, J., Kaths, J., & Andert, J. (2021). Closed-loop platoon simulation with cooperative intelligent transportation systems based on vehicle-to-x communication. Simulation Modelling Practice and Theory, 106, 102173.

    Article  Google Scholar 

  • Miao, Y., Tang, Y., Alzahrani, B. A., Barnawi, A., Alafif, T., & Hu, L. (2020). Airborne lidar assisted obstacle recognition and intrusion detection towards unmanned aerial vehicle: Architecture, modeling and evaluation. IEEE Transactions on Intelligent Transportation Systems, 22(7), 4531–4540.

    Article  Google Scholar 

  • Milanés, V., Pérez, J., Onieva, E., & González, C. (2009). Controller for urban intersections based on wireless communications and fuzzy logic. IEEE Transactions on Intelligent Transportation Systems, 11(1), 243–248.

    Article  Google Scholar 

  • Mohamed, N., Bajaj, M., Almazrouei, S. K., Jurado, F., Oubelaid, A., & Kamel, S. (2023). Artificial intelligence (AI) and machine learning (ml)-based information security in electric vehicles: A review. In 2023 5th global power, energy and communication conference (GPECOM), (pp. 108–113). IEEE.

  • Nawaratne, R., Alahakoon, D., De Silva, D., & Yu, X. (2019). Spatiotemporal anomaly detection using deep learning for real-time video surveillance. IEEE Transactions on Industrial Informatics, 16(1), 393–402.

    Article  Google Scholar 

  • Nwakanma, C. I., Ahakonye, L. A. C., Njoku, J. N., Odirichukwu, J. C., Okolie, S. A., Uzondu, C., Ndubuisi Nweke, C. C., & Kim, D. S. (2023). Explainable artificial intelligence (XAI) for intrusion detection and mitigation in intelligent connected vehicles: A review. Applied Sciences, 13(3), 1252.

    Article  CAS  Google Scholar 

  • Othman, K. (2022). Exploring the implications of autonomous vehicles: A comprehensive review. Innovative Infrastructure Solutions, 7(2), 165.

    Article  Google Scholar 

  • Praveena, V., Vijayaraj, A., Chinnasamy, P., Ali, I., Alroobaea, R., Alyahyan, S. Y., & Raza, M. A. (2022). Optimal deep reinforcement learning for intrusion detection in UAVS. Computers, Materials and Continua, 70(2), 2639–2653.

    Article  Google Scholar 

  • Putri, T. D., et al. (2021). Intelligent transportation systems (ITS): A systematic review using a natural language processing (NLP) approach. Heliyon 7(12)

  • Qureshi, A. M., Butt, A. H., & Jalal, A. (2023). Highway traffic surveillance over uav dataset via blob detection and histogram of gradient. In 2023 4th international conference on advancements in computational sciences (ICACS), (pp. 1–5). IEEE

  • Qureshi, A. M., & Jalal, A. (2023). Vehicle detection and tracking using Kalman filter over aerial images. In 2023 4th international conference on advancements in computational sciences (ICACS), (pp. 1–6). IEEE

  • Raja, A., Njilla, L., & Yuan, J. (2022). Adversarial attacks and defenses toward AI-assisted UAV infrastructure inspection. IEEE Internet of Things Journal, 9(23), 23379–23389.

    Article  Google Scholar 

  • Reddy, D. K., Behera, H. S., Nayak, J., Vijayakumar, P., Naik, B., & Singh, P. K. (2021). Deep neural network based anomaly detection in internet of things network traffic tracking for the applications of future smart cities. Transactions on Emerging Telecommunications Technologies, 32(7), e4121.

    Article  Google Scholar 

  • Research, P. (2023). EV platform market. https://www.precedenceresearch.com/ev-platform-market. Accessed: August 26, 2023.

  • Research, P. (2023). Unmanned aerial vehicle (UAV) drones market size 2022-2030. https://www.precedenceresearch.com/unmanned-aerial-vehicle-drones-market. Accessed: August 26, 2023.

  • Roberts, A., Maennel, O., & Snetkov, N. (2021). Cybersecurity test range for autonomous vehicle shuttles. In 2021 IEEE European symposium on security and privacy workshops (EuroS &PW), (pp. 239–248). IEEE.

  • Sahoo, S., Dragičević, T., & Blaabjerg, F. (2019). Cyber security in control of grid-tied power electronic converters-challenges and vulnerabilities. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(5), 5326–5340.

    Article  Google Scholar 

  • Saleem, M., Khadim, A., Fatima, M., Khan, M. A., Nair, H. K., & Asif, M. (2022). Assma-slm: Autonomous system for smart motor-vehicles integrating artificial and soft learning mechanisms. In 2022 international conference on cyber resilience (ICCR), (pp. 1–6). IEEE

  • Sindhwani, V., Sidahmed, H., Choromanski, K., & Jones, B. (2020). Unsupervised anomaly detection for self-flying delivery drones. In 2020 IEEE international conference on robotics and automation (ICRA), (pp. 186–192). IEEE.

  • Singh, K., Grover, S. S., & Kumar, R.K. (2022). Cyber security vulnerability detection using natural language processing. In 2022 IEEE world AI IoT congress (AIIoT), (pp. 174–178). IEEE.

  • Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognitive Robotics.

  • Srivastava, S., Narayan, S., & Mittal, S. (2021). A survey of deep learning techniques for vehicle detection from UAV images. Journal of Systems Architecture, 117, 102152.

    Article  Google Scholar 

  • Tan, X., Su, S., Zuo, Z., Guo, X., & Sun, X. (2019). Intrusion detection of UAVS based on the deep belief network optimized by PSO. Sensors, 19(24), 5529.

    Article  Google Scholar 

  • Tao, J., Han, T., & Li, R. (2021). Deep-reinforcement-learning-based intrusion detection in aerial computing networks. IEEE Network, 35(4), 66–72.

    Article  Google Scholar 

  • Thakur, K., & Kumar, G. (2021). Nature inspired techniques and applications in intrusion detection systems: Recent progress and updated perspective. Archives of Computational Methods in Engineering, 28(4), 2897–2919.

    Article  Google Scholar 

  • Tiwari, S. P. (2022). The impact of new technologies on society: A blueprint for the future. Scholarly Publisher RS Global Sp. z OO

  • Torfi, A., Shirvani, R. A., Keneshloo, Y., Tavaf, N., & Fox, E. A. (2020). Natural language processing advancements by deep learning: A survey. arXiv preprint arXiv:2003.01200

  • Vamsi Krishna Reddy, A. K., & Venkata Lakshmi Narayana, K. (2022). Meta-heuristics optimization in electric vehicles: An extensive review. Renewable and Sustainable Energy Reviews, 160, 112285. https://doi.org/10.1016/j.rser.2022.112285

    Article  Google Scholar 

  • Vanitha, N., & Ganapathi, P. (2020). Traffic analysis of uav networks using enhanced deep feed forward neural networks (EDFFNN). In Handbook of research on machine and deep learning applications for cyber security, (pp. 219–244). IGI Global.

  • Vargas, J., Alsweiss, S., Toker, O., Razdan, R., & Santos, J. (2021). An overview of autonomous vehicles sensors and their vulnerability to weather conditions. Sensors, 21(16), 5397.

    Article  Google Scholar 

  • Wang, S., Hu, Y., & Qi, G. (2022). Blockchain and deep learning based trust management for internet of vehicles. Simulation Modelling Practice and Theory, 120, 102627.

    Article  Google Scholar 

  • Wu, X., Chen, H., Chen, C., Zhong, M., Xie, S., Guo, Y., & Fujita, H. (2020). The autonomous navigation and obstacle avoidance for USVS with ANOA deep reinforcement learning method. Knowledge-Based Systems, 196, 105201.

    Article  Google Scholar 

  • Xiao, K., Zhao, J., He, Y., Li, C., & Cheng, W. (2019). Abnormal behavior detection scheme of UAV using recurrent neural networks. IEEE Access, 7, 110293–110305.

    Article  Google Scholar 

  • Xiong, M., Li, Y., Gu, L., Pan, S., Zeng, D., & Li, P. (2020). Reinforcement learning empowered IDPS for vehicular networks in edge computing. IEEE Network, 34(3), 57–63.

    Article  Google Scholar 

  • Xu, J., Guo, Q., Xiao, L., Li, Z., & Zhang, G. (2019). Autonomous decision-making method for combat mission of uav based on deep reinforcement learning. In 2019 IEEE 4th advanced information technology, electronic and automation control conference (IAEAC), (vol. 1, pp. 538–544). IEEE.

  • Yeong, D. J., Velasco-Hernandez, G., Barry, J., & Walsh, J. (2021). Sensor and sensor fusion technology in autonomous vehicles: A review. Sensors, 21(6), 2140.

    Article  Google Scholar 

  • Yun, W. J., Park, S., Kim, J., Shin, M., Jung, S., Mohaisen, D. A., & Kim, J. H. (2022). Cooperative multiagent deep reinforcement learning for reliable surveillance via autonomous multi-UAV control. IEEE Transactions on Industrial Informatics, 18(10), 7086–7096.

    Article  Google Scholar 

  • Zantalis, F., Koulouras, G., Karabetsos, S., & Kandris, D. (2019). A review of machine learning and IoT in smart transportation. Future Internet, 11(4), 94.

    Article  Google Scholar 

  • Zhang, W. E., Sheng, Q. Z., Alhazmi, A., & Li, C. (2020). Adversarial attacks on deep-learning models in natural language processing: A survey. ACM Transactions on Intelligent Systems and Technology (TIST), 11(3), 1–41.

    Google Scholar 

  • Zhao, X., Yang, R., Zhang, Y., Yan, M., & Yue, L. (2022). Deep reinforcement learning for intelligent dual-UAV reconnaissance mission planning. Electronics, 11(13), 2031.

    Article  Google Scholar 

  • Zuniga-Teran, A. A., Gerlak, A. K., Mayer, B., Evans, T. P., & Lansey, K. E. (2020). Urban resilience and green infrastructure systems: Towards a multidimensional evaluation. Current Opinion in Environmental Sustainability, 44, 42–47.

    Article  Google Scholar 

Download references

Funding

The authors extend their appreciation to Prince Sattam bin Abdulaziz University for funding this research work through the project number (PSAU/2024/01/823183).

Author information

Authors and Affiliations

Authors

Contributions

GK contributed in conceptualizing, implementing and drafting the paper. AA contributed in conceptualizing, and revising the paper.

Corresponding author

Correspondence to Gulshan Kumar.

Ethics declarations

Conflict of interest

The authors declare that there is no Conflict of interest regarding the publication of this paper.

Ethical approval

Not Applicable.

Consent to publish

Authors provide consent for review and publishing of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G., Altalbe, A. Artificial intelligence (AI) advancements for transportation security: in-depth insights into electric and aerial vehicle systems. Environ Dev Sustain (2024). https://doi.org/10.1007/s10668-024-04790-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-024-04790-4

Keywords

Navigation