Skip to main content

Advertisement

Log in

Assessing flood susceptibility with ALOS PALSAR and LiDAR digital terrain models using the height above nearest drainage (HAND) model

  • Original paper
  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Addressing the escalating issue of flood susceptibility, exacerbated by climate change and urban expansion, this study presents a comprehensive evaluation of the Height Above the Nearest Drainage (HAND) model in Barreiros, Brazil—a locale recurrently affected by floods. Employing rigorous calibration techniques, the HAND model was fine-tuned using Digital Terrain Models (DTMs)—Light Detecting and Ranging (LiDAR) at 5 m and Advanced Land Observing Satellite Phased Array Type L-band Synthetic Aperture Radar (ALOS PALSAR) at 12.5 m—and validated using historical flood data. Metrics such as error percentages, Receiver Operating Characteristic (ROC), Area Under the Curve (AUC), Specificity, Sensitivity, and Precision were employed for validation. Results reveal that the LiDAR-based DTM provided superior drainage delineation, resulting in enhanced flood simulation accuracy. An overall effectiveness of 74.5% was achieved, further validated by ROC/AUC analyses. The study also highlights the model's tendency to overestimate flood risks in plains and suggests caution in its application. These findings have critical implications for flood risk assessment, urban planning, and resource allocation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  • Abbasi, S., & Erdebilli, B. (2023). Green closed-loop supply chain networks’ response to various carbon policies during COVID-19. Sustainability, 15(4), 3677. https://doi.org/10.3390/su15043677

    Article  CAS  Google Scholar 

  • Abbasi, S., & Choukolaei, H. A. (2023). A systematic review of green supply chain network design literature focusing on carbon policy. Decision Analytics Journal, 6, 100189. https://doi.org/10.1016/j.dajour.2023.100189

    Article  Google Scholar 

  • Abbasi, S., Daneshmand-Mehr, M., & Ghane Kanafi, A. (2023a). Green closed-loop supply chain network design during the coronavirus (COVID-19) pandemic: A case study in the iranian automotive industry. Environmental Modeling & Assessment, 28, 69–103. https://doi.org/10.1007/s10666-022-09863-0

    Article  Google Scholar 

  • Abbasi, S., Sıcakyüz, Ç., Erdebilli, B. (2023b). Designing the home healthcare supply chain during a health crisis. Journal of Engineering Research, 100098. https://doi.org/10.1016/j.jer.2023.100098

  • Afshari, S., Tavakoly, A. A., Rajib, M. A., Zheng, X., Follum, M. L., Omranian, E., & Fekete, B. M. (2018). Comparison of new generation low-complexity flood inundation mapping tools with a hydrodynamic model. Journal of Hydrology, 556, 539–556. https://doi.org/10.1016/j.jhydrol.2017.11.036h

    Article  Google Scholar 

  • APAC – Agência Pernambucana de Águas e Clima, 2013. Relatório de situação de recursos hídricos do estado de Pernambuco 2011/2012. Recife: APAC. 116 p. Available at: https://www.lai.pe.gov.br/apac/wp-content/uploads/sites/9/2019/03/Relat%C3%B3rio-de-situa%C3%A7%C3%A3o-de-recursos-h%C3%ADdricos-do-Estado-de-Pernambuco-APAC-2011-2012.pdf. Accessed in: 21 May 2020.

  • APAC – Agência Pernambucana de Águas e Clima, 2021. Monitoramento pluviométrico. Available from: http://old.apac.pe.gov.br/meteorologia/monitoramento-pluvio.php. Accessed in: 15 July 2021.

  • Barreiros. (2019). Plano de Contingência 2019 (Versão 1.8). Prefeitura Municipal de Barreiros.

  • Bhatt, C. M., & Rao, S. (2018). HAND (Height Above Nearest Drainage) tool and satellite-based geospatial analysis of Hyderabad (India) urban floods, September 2016. Arabian Journal of Geosciences, 11, 600. https://doi.org/10.1007/s12517-018-3952-1

    Article  Google Scholar 

  • Bhuyan, N., Sajjad, H., Saha, T. K., Sharma, Y., Masroor, M., Rahaman, M. H., & Ahmed, R. (2024). Assessing landscape ecological vulnerability to riverbank erosion in the Middle Brahmaputra floodplains of Assam, India using machine learning algorithms. CATENA, 234, 107581. https://doi.org/10.1016/j.catena.2023.107581

    Article  Google Scholar 

  • Buszta, J., Wójcik, K., Santos, C. A. G., Kozioł, K., & Maciuk, K. (2023). Historical analysis and prediction of the magnitude and scale of natural disasters globally. Resources, 12, 106. https://doi.org/10.3390/resources12090106

    Article  Google Scholar 

  • Chen, Y., Li, X., Liu, X., Zhang, W., & Huang, M. (2019). Tele-connecting China’s future urban growth to impacts on ecosystem services under the shared socioeconomic pathways. Science of the Total Environment, 652, 765–779. https://doi.org/10.1016/j.scitotenv.2018.10.283

    Article  CAS  Google Scholar 

  • Chwedczuk, K., Cienkosz, D., Apollo, M., Borowski, L., Lewinska, P., Santos, C. A. G., Eborka, K., Kulshreshtha, S., Romero-Andrade, R., Sedeek, A., Liibusk, A., & Maciuk, K. (2022). Challenges related to the determination of altitudes of mountain peaks presented on cartographic sources. Geodetski Vestnik, 66(1), 49–59. https://doi.org/10.15292/geodetski-vestnik.2022.01.49-59

    Article  Google Scholar 

  • Cirilo, J. A., Alves, F. H. B., Silva, B. M., & Campos, P. H. A. L. (2014). Suporte de Informações Georreferenciadas de Alta Resolução para Implantação de Infraestrutura e Planejamento Territorial. Revista Brasileira De Geografia Física, 7(4), 755–763.

    Article  Google Scholar 

  • Cirilo, J. A., Alves, F. H. B., Silva, B. M., Campos, P. H. A. L. (2015). Pernambuco Tridimensional: base de dados espaciais para planejamento urbano e gestão territorial. Proceedings of the Hidráulica e Recursos Hídricos dos Países de Língua Portuguesa, 12, Brasília, Brasil.

  • CONDEPE/FIDEM, 2006. Rio Una, GL 4 E GL 5. Recife: CONDEPE/FIDEM, 85 p. Available from: http://www.condepefidem.pe.gov.br/c/document_library/get_file?p_ l_id=78673&folderId=141847 &name=DLFE-11996.pdf. Accessed in: 29 Aug 2019.

  • CRED – Centre for Research on the Epidemiology of Disasters, 2022. 2021 Disasters in numbers. Brussels: CRED. Available at: https://cred.be/sites/default/files/2021_EMDAT_report.pdf. Accessed in: 05 May 2022.

  • De Oliveira, G., Mataveli, G., Stark, S. C., Jones, M. W., Carmenta, R., Brunsell, N. A., et al. (2023). Increasing wildfires threaten progress on halting deforestation in Brazilian Amazonia. Nature Ecology & Evolution, 7(12), 1945–1946. https://doi.org/10.1038/s41559-023-02233-3.

    Article  Google Scholar 

  • Dhote, P.R., Joshi, Y., Rajib, A., Thakur, P.K., Nikam, B.R., Aggarwal, S.P. (2023). Evaluating topography-based approaches for fast floodplain mapping in data-scarce complex-terrain regions: Findings from a Himalayan basin. Journal of Hydrology, 620, Part A, 129309. https://doi.org/10.1016/j.jhydrol.2023.129309

  • Diehl, R. M., Gourevitch, J. D., Drago, S., Wemple, B. C., 2021. Improving flood hazard using a low-complexity, probabilistic floodplain mapping approach. PLoS ONE, 16(3). https://doi.org/10.1371/journal.pone.0248683

  • Do Lago, C. A., Giacomoni, M. H., Bentivoglio, R., Taormina, R., Gomes, M. N., & Mendiondo, E. M. (2023). Generalizing rapid flood predictions to unseen urban catchments with conditional generative adversarial networks. Journal of Hydrology, 618, 129276. https://doi.org/10.1016/j.jhydrol.2023.129276

    Article  Google Scholar 

  • Espinoza, N. S., dos Santos, C. A. C., de Oliveira, M. B. L., Silva, M. T., Santos, C. A. G., Silva, R. M., Mishra, M., & Ferreira, R. R. (2023). Assessment of urban heat islands and thermal discomfort in the Amazonia biome in Brazil: A case study of Manaus city. Building and Environment, 227, 109772. https://doi.org/10.1016/j.buildenv.2022.109772

    Article  Google Scholar 

  • Fang, L., Huang, J., Cai, J., Nitivattananon, V. (2022). Hybrid approach for flood susceptibility assessment in a flood-prone mountainous catchment in China. Journal of Hydrology, 612. https://doi.org/10.1016/j.jhydrol.2022.128091

  • Fanjul-Hevia, A., González-Manteiga, W., & Pardo-Fernández, J. C. (2021). A non-parametric test for comparing conditional ROC curves. Computational Statistics & Data Analysis, 157, 107146. https://doi.org/10.1016/j.csda.2020.107146

    Article  Google Scholar 

  • Goerl, R. F., Chaffe, P. L. B., Speckhann, G. A., Robert, J., Pellerin, G. M., Flores, J. A. A., de Abreu, J. J., Sanchez, G. M. (2017a). O modelo HAND como ferramenta de mapeamento de áreas propensas a inundar. Proceedings of the Simpósio Brasileiro de Recursos Hídricos, Florianópolis.

  • Goerl, R. F., Michel, G. P., Kobiyama, M. (2017b). Mapeamento de áreas susceptíveis a inundação com o modelo HAND e análise do seu desempenho em diferentes resoluções espaciais. Revista Brasileira de Cartografia, 69(1), 61–69. https://doi.org/10.14393/rbcv69n1-44032

  • Ha, H., Bui, Q. D., Nguyen, H. D., Pham, B. T., Lai, T. D., & Luu, C. (2023). A practical approach to flood hazard, vulnerability, and risk assessing and mapping for Quang Binh province. Vietnam. Environment, Development and Sustainability, 25, 1101–1130. https://doi.org/10.1007/s10668-021-02041-4

    Article  Google Scholar 

  • Hasan, M. A., Mayeesha, A. N., & Razzak, M. Z. A. (2023). Evaluating geomorphological changes and coastal flood vulnerability of the Nijhum Dwip Island using remote sensing techniques. Remote Sensing Applications: Society and Environment, 32, 101028. https://doi.org/10.1016/j.rsase.2023.101028

    Article  Google Scholar 

  • IBGE – Instituto Brasileiro de Geografia e Estatística, 2010. Sinopse do Censo Demográfico 2010 - Pernambuco. Available from: https://censo2010.ibge.gov.br/sinopse/index.php?dados=29&uf=26. Accessed 28 Aug 2019.

  • IBGE – Instituto Brasileiro de Geografia e Estatística, 2021. IBGE Cidades: Barreiros, 2021. Available from: https://censo2010.ibge.gov.br/sinopse/index.php?dados=29&uf=26. Accessed 29 Nov 2021.

  • Islam, K., Rahman, M. F., & Jashimuddin, M. (2018). Modeling land use change using cellular automata and artificial neural network: the case of Chunati Wildlife Sanctuary, Bangladesh. Ecological Indicators, 88(3), 439–453. https://doi.org/10.1016/j.ecolind.2018.01.047

    Article  Google Scholar 

  • Kundzewicz, Z. W., Su, B., Wang, Y., Wang, G., Wang, G., Huang, J., & Jiang, T. (2019). Flood risk in a range of spatial perspectives: from global to local scales. Natural Hazards and Earth System Sciences, 19(7), 1319–1328. https://doi.org/10.5194/nhess-19-1319-2019

    Article  Google Scholar 

  • Li, Z., Duque, F. Q., Grout, T., Bates, B., & Demir, I. (2023). Comparative analysis of performance and mechanisms of flood inundation map generation using Height Above Nearest Drainage. Environmental Modelling & Software, 159, 105565. https://doi.org/10.1016/j.envsoft.2022.105565

    Article  Google Scholar 

  • Li, Z., Mount, J., & Demir, I. (2022). Accounting for uncertainty in real-time flood inundation mapping using HAND model: Iowa case study. Natural Hazards, 112, 977–1004. https://doi.org/10.1007/s11069-022-05215-z

    Article  Google Scholar 

  • Lima, C. A. S., Heck, H. A. D., Almeida, A. K., Marques, L. S., de Souza, R. S., & de Almeida, I. K. (2022). Multicriteria analysis for identification of flood control mechanisms: Application to extreme events in cities of different Brazilian regions. International Journal of Disaster Risk Reduction, 71, 102769. https://doi.org/10.1016/j.ijdrr.2021.102769

    Article  Google Scholar 

  • Malik, S., Pal, S. C., Arabameri, A., et al. (2021). GIS-based statistical model for the prediction of flood hazard susceptibility. Environment, Development and Sustainability, 23, 16713–16743. https://doi.org/10.1007/s10668-021-01377-1

    Article  Google Scholar 

  • Massei, K. A., Souza, M. C. S., da Silva, R. M., de Araújo Costa, D., Vianna, P. C. G., da Silva, M. C. B., de Miranda, G. E. C., Eggertesen, L., Eloy, C. C., & Santos, C. A. G. (2023). Analysis of marine diversity and anthropogenic pressures on Seixas coral reef ecosystem (northeastern Brazil). Science of the Total Environment, 905, 166984. https://doi.org/10.1016/j.scitotenv.2023.166984

    Article  CAS  Google Scholar 

  • Mengue, V. P., Scottá, F. C., Silva, T. S., & Farina, F. (2016). Utilização do modelo HAND para mapeamento das áreas mais suscetíveis à inundação no rio Uruguai. Pesquisas Em Geociências, 43(1), 41–53. https://doi.org/10.22456/1807-9806.78191

    Article  Google Scholar 

  • Mengue, V., Guerra, R., Monteiro, D., Moraes, M., & Vogt, H. (2017). Análise da expansão urbana em áreas suscetíveis à inundação utilizando o modelo HAND: o caso da Região Metropolitana de Porto Alegre, Brasil. Revista De Geografia e Ordenamento Do Território, 12, 231–253. https://doi.org/10.17127/got/2017.12.010

    Article  Google Scholar 

  • Milanesi, J., Quadros, E. L. L., & Lahm, R. A. (2017). Utilização do modelo HAND no reconhecimento dos terrenos sujeitos a inundação – Porto Alegre/RS. Revista Brasileira De Cartografia, 69(4), 675–686. https://doi.org/10.14393/rbcv69n4-44327

    Article  Google Scholar 

  • Mishra, M., Kar, P. K., Chand, P., Mohanty, P. K., Acharyya, T., Santos, C. A. G., Gonçalves, R. M., Silva, R. M., Bhattacharyya, D., Beja, S. K., & Behera, B. (2023). Deciphering the impact of anthropogenic coastal infrastructure on shoreline dynamicity along Gopalpur coast of Odisha (India): An integrated assessment with geospatial and field-based approaches. Science of the Total Environment, 858, 159625. https://doi.org/10.1016/j.scitotenv.2022.159625

    Article  CAS  Google Scholar 

  • Momo, M. R., Pinheiro, A., Severo, D. L., Cuartas, L. A., & Nobre, A. D. (2016). Desempenho do modelo HAND no mapeamento de áreas suscetíveis à inundação usando dados de alta resolução espacial. Revista Brasileira De Recursos Hídricos, 21(1), 200–208. https://doi.org/10.21168/rbrh.v21n1.p200-208

    Article  Google Scholar 

  • Mukherjee, R., & Deb, P. (2023). Application of GIS-based analytical hierarchy process for assessment and mapping of flood risk zone in the lower Ramganga River Basin, Western Gangetic Plain, India. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-023-02957-z

    Article  Google Scholar 

  • Narendr, A., Vinay, S., Aithal, B. H., et al. (2022). Multi-dimensional parametric coastal flood risk assessment at a regional scale using GIS. Environment, Development and Sustainability, 24, 9569–9597. https://doi.org/10.1007/s10668-021-01839-6

    Article  Google Scholar 

  • Nobre, A. D., Cuartas, L. A., Hodnett, M., Rennó, C. D., Rodrigues, G., Silveira, A., Waterloo, M., & Saleska, S. (2011). Height above the nearest drainage: A hydrologically relevant new terrain model. Journal of Hydrology, 404(1–2), 13–29. https://doi.org/10.1016/j.jhydrol.2011.03.051

    Article  Google Scholar 

  • Peng, L., Wang, Y., Yang, L., Garchagen, M., & Deng, X. (2024). A comparative analysis on flood risk assessment and management performances between Beijing and Munich. Environmental Impact Assessment Review, 104, 107319. https://doi.org/10.1016/j.eiar.2023.107319

    Article  Google Scholar 

  • Rana, S. M. S., Habib, S. M. A., Sharifee, M. N. H., Sultana, N., & Rahman, S. H. (2023). Flood risk mapping of the flood-prone Rangpur division of Bangladesh using remote sensing and multi-criteria analysis. Natural Hazards Research. https://doi.org/10.1016/j.nhres.2023.09.012

    Article  Google Scholar 

  • Rennó, C. D., Nobre, A. D., Cuartas, L. A., Soares, J. V., Hodnett, M. G., Tomasella, J., & Waterloo, M. J. (2008). HAND, a new terrain descriptor using SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia. Remote Sensing of Environment, 112(9), 3469–3481. https://doi.org/10.1016/j.rse.2008.03.018

    Article  Google Scholar 

  • Shawky, M., & Hassan, Q. K. (2023). Geospatial modeling based-multi-criteria decision-making for flash flood susceptibility zonation in an arid area. Remote Sensing, 15(10), 2561. https://doi.org/10.3390/rs15102561

    Article  Google Scholar 

  • Silva, T. R. F., dos Santos, C. A. C., Silva, D. J. F., Santos, C. A. G., Silva, R. M., & Brito, J. I. B. (2022). Climate indices-based analysis of rainfall spatiotemporal variability in Pernambuco state, Brazil. Water, 14, 2190. https://doi.org/10.3390/w14142190

    Article  Google Scholar 

  • SINPDEC – Sistema Nacional de Proteção e Defesa Civil. (2017). Formulário de Informações do Desastre (FIDE). Município de Barreiros.

  • Speckhann, G. A., Chaffe, P. L. B., Goerl, R. F., de Abreu, J. J., & Flores, J. A. A. (2017). Flood hazard mapping in Southern Brazil: A combination of flow frequency analysis and the HAND model. Hydrological Sciences Journal, 63(1), 87–100. https://doi.org/10.1080/02626667.2017.1409896

    Article  Google Scholar 

  • UFSC – Universidade Federal De Santa Catarina. (2021). Atlas digital de desastres no Brasil – Mapa interativo. Centro de Estudos e Pesquisas em Engenharia e Defesa Civil (CEPED). Available from: https://atlas.ceped.ufsc.br/paginas/graficos.xhtml. Accessed 13 April 2021.

  • Viana, J. F. S., Montenegro, S. M. G. L., da Silva, B. B., da Silva, R. M., Srinivasan, R., Santos, C. A. G., Araujo, D. C. S., & Tavares, C. G. (2021). Evaluation of gridded meteorological datasets and their potential hydrological application to a humid area with scarce data for Pirapama River basin, northeastern Brazil. Theoretical and Applied Climatology, 145, 393–410. https://doi.org/10.1007/s00704-021-03628-7

    Article  Google Scholar 

  • Viana, J. F. S., Montenegro, S. M. G. L., Srinivasan, R., Santos, C. A. G., Mishra, M., Kalumba, A. M., & da Silva, R. M. (2023). Land use and land cover trends and their impact on streamflow and sediment yield in a humid basin of Brazil’s Atlantic forest biome. Diversity, 15(12), 1220. https://doi.org/10.3390/d15121220

    Article  Google Scholar 

  • Yan, X., Liu, J., Rühland, K. M., Dong, H., He, J., & Smol, J. P. (2022). Human deforestation outweighed climate as factors affecting Yellow River floods and erosion on the Chinese Loess Plateau since the 10th century. Quaternary Science Reviews, 295, 107796. https://doi.org/10.1016/j.quascirev.2022.107796

    Article  Google Scholar 

  • Young, A. F., Marengo, J. A., Coelho, J. O. M., Scofield, G. B., Silva, C. C. O., & Prieto, C. C. (2019). The role of nature-based solutions in disaster risk reduction: The decision maker’s perspectives on urban resilience in São Paulo state. International Journal of Disaster Risk Reduction, 39, 101219. https://doi.org/10.1016/j.ijdrr.2019.101219

    Article  Google Scholar 

  • Young, A. F., & Papini, J. A. J. (2020). How can scenarios on flood disaster risk support urban response? A case study in Campinas Metropolitan Area (São Paulo, Brazil). Sustainable Cities and Society, 61, 102253. https://doi.org/10.1016/j.scs.2020.102253

    Article  Google Scholar 

  • Zanandrea, F., Vanelli, F. A., Tavares, T. G. A., Goldenfum, J. A., 2018. Delimitação da área potencialmente afetada pela cheia histórica de 1974 em Tubarão, SC. Proceedings of the Encontro Nacional de Desastres, Porto Alegre, Brazil.

Download references

Funding

This study was also financed in part by the Brazilian Federal Agency for the Support and Evaluation of Graduate Education (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES)—Finance Code 001 (Grant 88887.501702/2020-00) and the National Council for Scientific and Technological Development, Brazil—CNPq (Grant No. 313358/2021-4, 309330/2021-1, and 420031/2021-9).

Author information

Authors and Affiliations

Authors

Contributions

MLPRA and HJAF designed the research; CAGS designed part of the methodology; MLPRA, RGLO, CAAR and HJAF wrote the original draft; MLPRA and CAGS performed the visualization; MLPRA, RGLO, CAAR, HJAF, RMS and CAGS performed the manuscript review and editing; and MLPRA, RGLO, CAAR, HJAF, RMS and CAGS wrote the final paper.

Corresponding author

Correspondence to Celso Augusto Guimarães Santos.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, M.L.P.R., Oliveira, R.G.L., Rocha, C.A.A. et al. Assessing flood susceptibility with ALOS PALSAR and LiDAR digital terrain models using the height above nearest drainage (HAND) model. Environ Dev Sustain (2024). https://doi.org/10.1007/s10668-024-04785-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-024-04785-1

Keywords

Navigation