Skip to main content
Log in

Bio-waste valorization to formulate an eco-friendly reduced graphene oxide based bio-gel for clinical applications

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Agricultural waste, which negatively impacts human health and the environment, can be used as a beneficial precursor for the synthesis of graphene oxide. In the current study, Green technology carbonaceous material derived from Agrowaste can be potentially converted into value-added reduced graphene oxide for effective application of Wound dressing. Setaria italica bio-waste was through improved Hummers method graphene oxide was synthesized. Reduced graphene oxide (rGO) was formed by reducing the synthesized graphene oxide with a phytoextract of Prosopis juliflora. UV–visible spectroscopy was used to characterize the synthesized materials, with the maximal absorbance range for graphene oxide being 232 nm and 262 nm for reduced graphene oxide, showing good reduction using the phytoextract. The XRD revealed 2θ peaks for graphene oxide and reduced graphene oxide at 15.21° and 22.96°, respectively showing the amorphous nature due to large and strong peaks. Peaks in the 3500 cm−1, 2920 cm−1, 1620 cm−1, and 1053 cm−1 FTIR range exhibited the functional groups –OH stretching, symmetric and antisymmetric –CH2 stretching, C=C stretching, and C–O stretching. The intensities of the oxygen-carrying functional groups have been found to be reduced in reduced graphene oxide as a result of the reduction process. Curled single-layer sheets for graphene oxide and wrinkled aggregated structures for reduced graphene oxide are shown by morphological investigation. Anti-oxidant, anti-bacterial, anti-diabetic, anti-inflammatory, and biocompatibility tests yielded positive findings, with less hemolysis of 0.2% and anti-coagulation capabilities up to the fifteenth minute, proved with a statistical approach. Based on the results obtained, the formulated bio-gel has good biocompatibility, non-toxic, and efficient at even low concentrations. Our study is unique because an rGO bio-gel with improved therapeutic characteristics can be proposed as a feasible formulation for future as a wound dressing Supportive material.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Availability of data and materials

Data will be available upon reasonable request.

References

  • Abergel, D. S. L., Apalkov, V., Berashevich, J., Ziegler, K., & Chakraborty, T. (2010). Properties of graphene: A theoretical perspective. Advances in Physics, 59(4), 261–482.

    Article  CAS  Google Scholar 

  • Aiyalu, R., Govindarjan, A., & Ramasamy, A. (2016). Formulation and evaluation of topical herbal gel for the treatment of arthritis in animal model. Brazilian Journal of Pharmaceutical Sciences, 52, 493–507.

    Article  CAS  Google Scholar 

  • Alam, S. N., Sharma, N., & Kumar, L. (2017). Synthesis of graphene oxide (Graphene Oxide) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (reduced Graphene Oxide). Graphene, 6(1), 1–18.

    Article  CAS  Google Scholar 

  • Allen, M. J., Tung, V. C., & Kaner, R. B. (2010). Honeycomb carbon: A review of graphene. Chemical Reviews, 110(1), 132–145.

    Article  CAS  Google Scholar 

  • Andonovic, B., Temkov, M., Ademi, A., Petrovski, A., Grozdanov, A., & Paunovic, P. (2014). Laue functions model vs Scherrer equation in determination of graphene layers number on the ground of XRD data. Journal of Chemical Technology and Metallurgy, 49, 545–550.

    Google Scholar 

  • Aslam, M., Kalyar, M. A., & Raza, Z. A. (2016). Synthesis and structural characterization of separate graphene oxide and reduced graphene oxide nanosheets. Materials Research Express, 3(10), 105036.

    Article  Google Scholar 

  • Avouris, P., & Dimitrakopoulos, C. (2012). Graphene: Synthesis and applications. In Materials Today, 15, 86–97.

    Article  CAS  Google Scholar 

  • Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. In Journal of Pharmaceutical Analysis, 6, 71–79.

    Article  Google Scholar 

  • Bera, M., Gupta, P., Chandravati, G. P., & Maji, P. K. (2018). Facile one-pot synthesis of graphene oxide by sonication assisted mechanochemical approach and its surface chemistry. Journal of Nanoscience and Nanotechnology, 18(2), 902–912.

    Article  CAS  Google Scholar 

  • Burits, M., & Bucar, F. (2000). Antioxidant activity of Nigella sativa essential oil. Phytotherapy Research, 14(5), 323–328.

    Article  CAS  Google Scholar 

  • Çiplak, Z., Yildiz, N., & Cąlimli, A. (2015). Investigation of graphene/Ag nanocomposites synthesis parameters for two different synthesis methods. Fullerenes Nanotubes and Carbon Nanostructures, 23(4), 361–370.

    Article  Google Scholar 

  • Dantas, M. G. B., Reis, S. A. G. B., Damasceno, C. M. D., Rolim, L. A., Rolim-Neto, P. J., Carvalho, F. O., et al. (2016). Development and evaluation of stability of a gel formulation containing the monoterpene borneol. The Scientific World Journal, 2016, 7394685.

    Article  Google Scholar 

  • Deng, J., You, Y., Sahajwalla, V., & Joshi, R. K. (2016). Transforming waste into carbon-based nanomaterials. In Carbon, 96, 105–115.

    Article  CAS  Google Scholar 

  • Deng, X., Li, W., Wang, Y., & Ding, G. (2020). Recognition and separation of enantiomers based on functionalized magnetic nanomaterials. TrAC Trends in Analytical Chemistry, 124, 115804.

    Article  CAS  Google Scholar 

  • Dey, P., Chatterjee, P., Chandra, S., & Bhattacharya, S. (2011). Comparative in vitro evaluation of anti-inflammatory effects of aerial parts and roots from Mikania scandens. J Adv Pharm Educ Res, 1, 271–277.

    Google Scholar 

  • Emiru, T. F., & Ayele, D. W. (2017). Controlled synthesis, characterization and reduction of graphene oxide: A convenient method for large scale production. Egyptian Journal of Basic and Applied Sciences, 4(1), 74–79.

    Article  Google Scholar 

  • Extraction and Fractionation of Insoluble Fibers from Foxtail Millet (Setariaitalica (L.) P. Beauv). (2011). https://www.researchgate.net/publication/269858980_Extraction_and_Fractionation_of_Insoluble_Fibers_from_Foxtail_Millet_Setaria_italica_L_P_Beauv

  • Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191.

    Article  CAS  Google Scholar 

  • Haghighi, B., & Tabrizi, M. A. (2013). Green synthesis of reduced graphene oxide nanosheets using rose water and a survey on their characteristics and applications. In RSC Advances, 3, 13365–13371.

    Article  CAS  Google Scholar 

  • Hashem, M. A., Payel, S., Hasan, M., Momen, M. A., & Sahen, M. S. (2021). Green preservation of goatskin to deplete chloride from tannery wastewater. HighTech and Innovation Journal, 2(2), 99–107.

    Article  Google Scholar 

  • Hui, L., Piao, J. G., Auletta, J., Hu, K., Zhu, Y., & Meyer, T. (2014). Availability of the basal planes of graphene oxide determines whether it is antibacterial. ACS Applied Materials and Interfaces, 6(15), 13183–13190.

    Article  CAS  Google Scholar 

  • Jamadar, M. J., & Shaikh, R. H. (2017). Preparation and evaluation of herbal gel formulation. J. Pharm. Educ. Res, 1(2), 201–224.

    Google Scholar 

  • Katsnelson, M. I. (2007). Graphene: Carbon in two dimensions. Materials Today, 10, 20–27.

    Article  CAS  Google Scholar 

  • Khadayeir, A. A., Wannas, A. H., & Yousif, F. H. (2022). Effect of applying cold plasma on structural, antibacterial and self cleaning properties of α-Fe2O3 (HEMATITE) thin film. Emerging Science Journal, 6(1), 75–85.

    Article  Google Scholar 

  • Khan, M., Al-Marri, A. H., Khan, M., Mohri, N., Adil, S. F., Al-Warthan, A., Siddiqui, M. R. H., Alkhathlan, H. Z., Berger, R., Tremel, W., & Tahir, M. N. (2014). Pulicariaglutinosa plant extract: A green and eco-friendly reducing agent for the preparation of highly reduced graphene oxide. RSC Advances, 4(46), 24119–24125.

    Article  CAS  Google Scholar 

  • Kim, F., Cote, L. J., & Huang, J. (2010). Graphene oxide: Surface activity and two-dimensional assembly. Advanced Materials, 22(17), 1954–1958.

    Article  CAS  Google Scholar 

  • Krutyakov, Y. A., Kudrinskiy, A. A., Olenin, A. Y., & Lisichkin, G. V. (2008). Synthesis and properties of silver nanoparticles: Advances and prospects. Russian Chemical Reviews, 77(3), 233.

    Article  CAS  Google Scholar 

  • Lin, F., Li, C., & Chen, Z. (2018). Bacteria-derived carbon dots inhibit biofilm formation of Escherichia coli without affecting cell growth. Frontiers in Microbiology, 9, 259.

    Article  Google Scholar 

  • Liu, S., Zeng, T. H., Hofmann, M., Burcombe, E., Wei, J., & Jiang, R. (2011). Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano, 5, 6971–6980.

    Article  CAS  Google Scholar 

  • Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS Nano, 4(8), 4806–4814.

    Article  CAS  Google Scholar 

  • Mousavi, S. H., Kavianpour, M. R., & Alcaraz, J. L. G. (2023). The impacts of dumping sites on the marine environment: A system dynamics approach. Applied Water Science, 13(5), 109.

    Article  CAS  Google Scholar 

  • Nasiri, M., Nasiri, H., Nasiri, S., Bitarafan, M., & Fazelabdolabadi, B. (2021). The global equity market reactions of the oil & gas midstream and marine shipping industries to COVID-19: An entropy analysis. HighTech and Innovation Journal, 2(4), 346–358.

    Article  Google Scholar 

  • Pan, N., Guan, D., & He, T. (2013). Removal of Th4+ ions from aqueous solutions by graphene oxide. Journal of Radioanalytical and Nuclear Chemistry, 298(3), 1999–2008.

    Article  CAS  Google Scholar 

  • Perera, D. S. M., De Silva, R. C. L., Nayanajith, L. D. C., Colombage, H. C. D. P., Suresh, T. S., Abeysekera, W. P. K. M., & Kottegoda, I. R. M. (2021). Anti-inflammatory and antioxidant properties of Coffea arabica/reduced graphene oxide nanocomposite prepared by green synthesis. Material Science Research India, 18, 305–317.

    Article  CAS  Google Scholar 

  • Pitchaipillai, R., & Ponniah, T. (2016). In vitro antidiabetic activity of ethanolic leaf extract of Bruguiera cylindrica L.–glucose uptake by yeast cells method. International Biological and Biomedical Journal, 2(4), 171–175.

    CAS  Google Scholar 

  • Preethy, K. R., & Chamundeeswari, M. (2022). Optimization of reduced graphene oxide production using central composite design from Pennisetum glaucum for biomedical applications. Biotechnology and Applied Biochemistry., 70, 773–789.

    Article  Google Scholar 

  • Ramesh, S., Vinitha, U. G., Anthony, S. P., & Muthuraman, M. S. (2020). Pods of Acacia nilotica mediated synthesis of copper oxide nanoparticles and it’s in vitro biological applications. Materials Today: Proceedings, 47, 751–756.

    Google Scholar 

  • Ren, W., & Cheng, H. M. (2014). The global growth of graphene. In Nature Nanotechnology, 9, 726–730.

    Article  CAS  Google Scholar 

  • Roy, B. (2022). Production technology of foxtail millet (All India co-ordinated project on small millet). https://www.researchgate.net/publication/359558527Production_technology_of_foxtail_millet_All_India_coordinated_project_on_smallmillet

  • Sahira Banu, K., & Cathrine, L. (2015). General techniques involved in phytochemical analysis. International Journal of Advanced Research in Chemical Science (IJARCS), 2(4), 25–32.

    Google Scholar 

  • Shahriary, L., & Athawale, A. (2014). Graphene oxide synthesized by using modified hummers approach. Nternational Journal of Renewable Energy and Environmental Engineering, 02, 58–63.

    Google Scholar 

  • Sharma, B. K., Saha, A., Rahaman, L., Bhattacharjee, S., & Tribedi, P. (2015). Silver inhibits the biofilm formation of Pseudomonas aeruginosa. Advances in Microbiology, 05, 677–685.

    Article  CAS  Google Scholar 

  • Sharma, N., & Niranjan, K. (2018). Foxtail millet: Properties, processing, health benefits, and uses. In Food Reviews International, 34, 329–363.

    Article  CAS  Google Scholar 

  • Slowing, I. I., Wu, C. W., Vivero-Escoto, J. L., & Lin, V. S. Y. (2009). Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells. Small (weinheim an Der Bergstrasse, Germany), 5(1), 57–62.

    Article  CAS  Google Scholar 

  • Somanathan, T., Prasad, K., & Ostrikov, K. K. (2015). Graphene oxide synthesis from agro waste. Nanomaterials, 5, 826–834.

    Article  CAS  Google Scholar 

  • Tamilselvi, R., Ramesh, M., Lekshmi, G. S., Bazaka, O., Levchenko, I., & Bazaka, K. (2020). Graphene oxide – based supercapacitors from agricultural wastes: a step to mass production of highly efficient electrodes for electrical transportation systems. Renewable Energy, 151, 731–739.

    Article  CAS  Google Scholar 

  • Ukande, M. D., Shaikh, S., Murthy, K., & Shete, R. (2019). Review on Pharmacological potentials of Prosopis juliflora. Journal of Drug Delivery and Therapeutics, 9(4–s), 755–760.

    Article  CAS  Google Scholar 

  • Wang, Y., Zhang, P., Fang Liu, C., Zhan, L., Fang Li, Y., & Huang, C. Z. (2012). Green and easy synthesis of biocompatible graphene for use as an anticoagulant. RSC Advances, 2(6), 2322–2328.

    Article  CAS  Google Scholar 

  • Wei, X. Q., Hao, L. Y., Shao, X. R., Zhang, Q., Jia, X. Q., & Zhang, Z. R. (2015). Insight into the interaction of graphene oxide with serum proteins and the impact of the degree of reduction and concentration. ACS Applied Material Interfaces, 7, 13367–13374.

    Article  CAS  Google Scholar 

  • Xu, Y., Bai, H., Lu, G., Li, C., & Shi, G. (2008). Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. Journal of the American Chemical Society, 130, 5856–5857.

    Article  CAS  Google Scholar 

  • Yadav, N., & Lochab, B. (2019). A comparative study of graphene oxide: Hummers, intermediate and improved method. FlatChem, 13, 40–49.

    Article  CAS  Google Scholar 

  • Ye, J., Wu, Y. C., Xu, K., Ni, K., Shu, N., Taberna, P. L., Zhu, Y., & Simon, P. (2019). Charge Storage Mechanisms of Single-Layer Graphene in Ionic Liquid. Journal of the American Chemical Society, 141(42), 16559–16563.

    Article  CAS  Google Scholar 

  • Za’im, N. N. M., Yusop, H. M., & Ismail, W. N. W. (2021). Synthesis of water-repellent coating for polyester fabric. Emerging Science Journal, 5(5), 747–754.

    Article  Google Scholar 

  • Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 22(35), 3906–3924.

    Article  CAS  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chamundeeswari.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preethy, K.R., Ammu Chandhini, A. & Chamundeeswari, M. Bio-waste valorization to formulate an eco-friendly reduced graphene oxide based bio-gel for clinical applications. Environ Dev Sustain (2024). https://doi.org/10.1007/s10668-024-04700-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-024-04700-8

Keywords

Navigation