Skip to main content
Log in

Water scarcity assessment in Iran’s agricultural sector using the water footprint concept

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The adoption of the water footprint concept and its application in assessing water stress can provide valuable insights into the sustainable use of water resources in agricultural production. The objective of the present study is to calculate the agricultural water stress index (AWSI) using the water footprint framework and water scarcity indices, namely blue water scarcity (BWS), water stress index (WSI), water self-sufficiency (WSS), water dependency (WD), and water poverty (WP) indices in Iran’s agricultural sector during the period of 2008–2019. Subsequently, the spatiotemporal patterns of water scarcity indices were examined at both the provincial and national levels. The findings reveal that the agricultural water footprint (AWF) amounted to approximately 195.6 Gm3, with AWFblue, AWFgreen, and AWFgray accounting for 85.2%, 6.9%, and 7.9%, respectively. The average national AWSI was estimated to be 0.94, indicating a state of extreme stress, and exhibiting an upward trend from 2012 to 2019. The southern and central regions, notably Yazd, Kerman, Tehran, and Hormozgan, have experienced severe and extreme water stress (AWSI > 1.38). Conversely, the humid and Mediterranean regions in the north, northwest, and west of Iran experience varying degrees of low to moderate water scarcity. Nevertheless, the western region (West Azerbaijan) and the northwest region (Zanjan and Hamedan) have transitioned from a state of moderate stress to a high-stress category (AWSI > 0.6). Based on the results, regions where BWS < AWSI < WSI exhibit lower levels of WP and WSS, but higher levels of WD. Conversely, in regions where AWSI > BWS > WSI, the significant diversity of agricultural products has contributed to an increase in WP and WSS, along with a decrease in WD. The AWSI, based on the water footprint concept, proves to be more suitable for reflecting regional water scarcity compared to existing water stress indices, particularly in arid and semi-arid agricultural production regions, due to the demonstrated environmental impacts of sustainable agricultural production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data will be shared upon reasonable request.

References

  • Ababaei, B., & Etedali, H. R. (2017). Water footprint assessment of main cereals in Iran. Agricultural Water Management, 179, 401–411.

    Article  Google Scholar 

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56 (p. D05109). Fao.

    Google Scholar 

  • ArabiYazdi, A., Alizadeh, A., & Nairizi, S. (2009). Study of food security based on the concept of virtual water trade and ecological water foot print (Case study: Khorasan Razavi Province). Journal of Agroecology. https://doi.org/10.22067/jag.v1i1.2649

    Article  Google Scholar 

  • Asheesh, M. (2007). Allocating gaps of shared water resources (scarcity index): Case study on Palestine-Israel. Water Resources in the Middle East: Israel-Palestinian Water Issues—from Conflict to Cooperation. https://doi.org/10.1007/978-3-540-69509-7_24

    Article  Google Scholar 

  • Ashraf, S., AghaKouchak, A., Nazemi, A., Mirchi, A., Sadegh, M., Moftakhari, H. R., & Mallakpour, I. (2019). Compounding effects of human activities and climatic changes on surface water availability in Iran. Climatic Change, 152(3), 379–391.

    Article  Google Scholar 

  • Bazrafshan, O., & Dehghanpir, S. (2020). Application of water footprint, virtual water trade and water footprint economic value of citrus fruit productions in Hormozgan Province, Iran. Sustainable Water Resources Management, 6(6), 1–10.

    Article  Google Scholar 

  • Bazrafshan, O., Etedali, H. R., Moshizi, Z. G. N., & Shamili, M. (2019a). Virtual water trade and water footprint accounting of Saffron production in Iran. Agricultural Water Management, 213, 368–374.

    Article  Google Scholar 

  • Bazrafshan, O., Etedali, H. R., & Moshizi, Z. G. N. (2022). Water footprint of fruits in arid and semi-arid regions. In Environmental Footprints of Crops (pp. 1–26). Springer Nature Singapore.

    Book  Google Scholar 

  • Bazrafshan, O., Vafaei, K., RamezaniEtedali, H., Zamani, H., & Hashemi, M. (2023). Economic analysis of water footprint for water management of rain-fed and irrigated almonds in Iran. Irrigation Science. https://doi.org/10.1007/s00271-023-00861-y

    Article  Google Scholar 

  • Bazrafshan, O., Zamani, H., Etedali, H. R., & Dehghanpir, S. (2019b). Assessment of citrus water footprint components and impact of climatic and nonclimatic factors on them. Scientia Horticulturae, 250, 344–351.

    Article  Google Scholar 

  • Bazrafshan, O., Zamani, H., Etedali, H. R., Moshizi, Z. G., Shamili, M., Ismaelpour, Y., & Gholami, H. (2020). Improving water management in date palms using economic value of water footprint and virtual water trade concepts in Iran. Agricultural Water Management, 229, 105941.

    Article  Google Scholar 

  • Bulut, A. P. (2023). Determining the water footprint of sunflower in Turkey and creating digital maps for sustainable agricultural water management. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-022-02903-5

    Article  Google Scholar 

  • Cao, X., Huang, X., Huang, H., Liu, J., Guo, X., Wang, W., & She, D. (2018). Changes and driving mechanism of water footprint scarcity in crop production: A study of Jiangsu Province, China. Ecological Indicators, 95, 444–454.

    Article  Google Scholar 

  • Cao, X., Wu, M., Guo, X., Zheng, Y., Gong, Y., Wu, N., & Wang, W. (2017). Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework. Science of the Total Environment, 609, 587–597.

    Article  CAS  Google Scholar 

  • Cao, X. C., Wu, P. T., Wang, Y. B., & Zhao, X. N. (2014). Assessing blue and green water utilization in wheat production of China from the perspectives of water footprint and total water use. Hydrology and Earth System Sciences, 18(8), 3165–3178.

    Article  CAS  Google Scholar 

  • Chapagain, A. K., Hoekstra, A. Y., & Savenije, H. H. (2006). Water saving through international trade of agricultural products. Hydrology and Earth System Sciences, 10(3), 455–468.

    Article  Google Scholar 

  • Colella, M., Ripa, M., Cocozza, A., Panfilo, C., & Ulgiati, S. (2021). Challenges and opportunities for more efficient water use and circular wastewater management. The case of Campania region Italy. Journal of Environmental Management, 297, 113171. https://doi.org/10.1016/j.jenvman.2021.113171

    Article  CAS  Google Scholar 

  • Collins, B., RamezaniEtedali, H., Tavakkol, A., & Kaviani, A. (2021). Spatiotemporal variations of evapotranspiration and crop water requirement over 1957–2016 in Iran based on CRU TS 4.01 Grid-based dataset. Journal of Arid Land, 13, 858–878. https://doi.org/10.1007/s40333-021-0103-4

    Article  Google Scholar 

  • Damkjaer, S., & Taylor, R. (2017). The measurement of water scarcity: Defining a meaningful indicator. Ambio, 46(5), 513–531.

    Article  Google Scholar 

  • Dhakal, M. P., Ali, A., Khan, M. Z., Wagle, N., Shah, G. M., Maqsood, M. M., & Ali, A. (2021). Agricultural water management challenges in the Hunza River Basin: Is a solar water pump an alternative option? Irrigation and Drainage, 70(4), 644–658. https://doi.org/10.1002/ird.2563

    Article  Google Scholar 

  • Dourte, D. R., Fraisse, C. W., & Uryasev, O. (2014). WaterFootprint on agroclimate: A dynamic, web-based tool for comparing agricultural systems. Agricultural Systems, 125, 33–41.

    Article  Google Scholar 

  • Es’ haghi, S. R., Karimi, H., Rezaei, A., & Ataei, P. (2022). Content analysis of the problems and challenges of agricultural water use: a case study of Lake Urmia Basin at Miandoab Iran. SAGE Open, 12(2), 21582440221091250.

    Google Scholar 

  • Falkenmark, M. (2001). The greatest water problem: The inability to link environmental security, water security and food security. International Journal of Water Resources Development, 17(4), 539–554.

    Article  Google Scholar 

  • Falkenmark, M., Lundqvist, J., & Widstrand, C. (1989). Macro-scale water scarcity requires micro-scale approaches: Aspects of vulnerability in semi-arid development. Natural resources forum (pp. 258–267). Blackwell Publishing Ltd.

    Google Scholar 

  • FAO, (2016). Water Withdrawal by Sector, Approximately 2010. Aquastat (Accessed 17 May 2017). Retrieved from http://www.fao.org/nr/aquastat/

  • Fu, H., Chen, Y., Yang, X., Di, J., Xu, M., & Zhang, B. (2019). Water resource potential for large-scale sweet sorghum production as bioenergy feedstock in Northern China. Science of the Total Environment, 653, 758–764.

    Article  CAS  Google Scholar 

  • Golkarami, A., & Kavianirad, M. (2017). The effect of water resources limitation on hydropolitical stresses (Case study: Central watershed of Iran with emphasis on Zayandehrud watershed). Geography and Environmental Planning, 28(1), 113–133.

    Google Scholar 

  • Hanafiah, M. M., Ghazali, N. F., Harun, S. N., Abdulaali, H. S., AbdulHasan, M. J., & Kamarudin, M. K. A. (2019). Assessing water scarcity in Malaysia: A case study of rice production. Desalination and Water Treatment, 149, 274–287.

    Article  CAS  Google Scholar 

  • Hoekstra, A. Y., Chapagain, A., Martinez-Aldaya, M., & Mekonnen, M. (2009). Water footprint manual: State of the art 2009. Water footprint network, enschede, the Netherlands, 255.

  • Hoekstra, A. Y., & Chapagain, A. K. (2008). Globalization of water: Sharing the planet’s freshwater resources. Blackwell Publishing.

    Google Scholar 

  • Hoekstra, A. Y., Chapagain, A. K., Mekonnen, M. M., & Aldaya, M. M. (2011). The water footprint assessment manual: Setting the global standard. Routledge.

    Google Scholar 

  • Hoekstra, A.Y., Hung, P.Q., (2002). Virtual water trade: A quantifcation of virtual water flows between nations in relation to international crop trade. Value of Water Research Report Series No. 11. UNESCO-IHE, Delft, the Netherlands.

  • Hoekstra, A. Y., & Hung, P. Q. (2005). Globalization of water resources: International virtual water flows in relation to crop trade. Global Environmental Change, 15(1), 45–56.

    Article  Google Scholar 

  • Hoekstra, A. Y., & Mekonnen, M. M. (2012). The water footprint of humanity. Proceedings of the National Academy of Sciences, 109(9), 3232–3237.

    Article  CAS  Google Scholar 

  • IRIMO. (2021). Iran meteorological bulletin. Islamic Republic of Iran Meteorological Organization Press.

    Google Scholar 

  • IWR, (2021). Iran Water Resources Management Company, Tehran

  • JafariShalamzari, M., & Zhang, W. (2018). Assessing water scarcity using the Water Poverty Index (WPI) in Golestan province of Iran. Water, 10(8), 1079.

    Article  Google Scholar 

  • Janjua, S., Hassan, I., Muhammad, S., Ahmed, S., & Ahmed, A. (2021). Water management in Pakistan’s Indus Basin: Challenges and opportunities. Water Policy, 23(6), 1329–1343. https://doi.org/10.2166/wp.2021.068

    Article  Google Scholar 

  • Kalvani, S. R., Sharaai, A., Manaf, L., & Hamidian, A. (2019). Assessing ground and surface water scarcity indices using ground and surface water footprints in the Tehran province of Iran. Applied Ecology & Environmental Research, 17(2), 4985.

    Article  Google Scholar 

  • Karandish, F., & Hoekstra, A. Y. (2017). Informing national food and water security policy through water footprint assessment: The case of Iran. Water, 9(11), 831.

    Article  Google Scholar 

  • Li, J. H., Lv, G. H., Bai, W. B., Liu, Q., Zhang, Y. C., & Song, J. Q. (2014). Modification and use of biochar from wheat straw (Triticum aestivum L.) for nitrate and phosphate removal from water. Desalination and Water Treatment., 57(10), 4681–4693.

    Google Scholar 

  • Liu, J., Yang, H., Gosling, S. N., Kummu, M., Flörke, M., Pfister, S., & Oki, T. (2017). Water scarcity assessments in the past, present, and future. Earth’s Future, 5(6), 545–559.

    Article  Google Scholar 

  • Ma, X., Shen, X., Qi, C., Ye, L., Yang, D., & Hong, J. (2018). Energy and carbon coupled water footprint analysis for Kraft wood pulp paper production. Renewable and Sustainable Energy Reviews, 96, 253–261.

    Article  CAS  Google Scholar 

  • Madani, K. (2014). Water management in Iran: What is causing the looming crisis. Journal of Environmental Studies and Sciences, 4(4), 315–328.

    Article  Google Scholar 

  • Madani, K., AghaKouchak, A., & Mirchi, A. (2016). Iran’s socioeconomic drought: Challenges of a water-bankrupt nation. Iranian Studies, 49(6), 997–1016.

    Article  Google Scholar 

  • MAJ. (2022). Iran agriculture bulletin. Agriculture Jihad Press.

    Google Scholar 

  • Mancosu, N., Snyder, R. L., Kyriakakis, G., & Spano, D. (2015). Water scarcity and future challenges for food production. Water, 7(3), 975–992.

    Article  Google Scholar 

  • Marlia, M. H., Nor, F. G., Siti, N. H., Hayder, S. A., Mahmood, J. A., & MohdKhairul, A. K. (2019). Assessing water scarcity in Malaysia: A case study of rice production. Desalination and Water Treatment, 149, 274–287.

    Article  Google Scholar 

  • Mekonnen, M. M., & Hoekstra, A. Y. (2011). The green, blue and gray water footprint of crops and derived crop products. Hydrology and Earth System Sciences, 15(5), 1577–1600.

    Article  Google Scholar 

  • MohammadJani, I., & Yazdanian, N. (2014). Analysis of the water crisis in the Iran and its management requirements. Economics Trend, 21(66–65), 117–144.

    Google Scholar 

  • PBO, (2021). Iran Program and budget organization, Tehran.

  • Pfister, S., Koehler, A., & Hellweg, S. (2009). Assessing the environmental impacts of freshwater consumption in LCA. Environmental Science & Technology, 43, 4098–4104.

    Article  CAS  Google Scholar 

  • Qasemipour, E., & Abbasi, A. (2019). Assessment of agricultural water resources sustainability in arid regions using virtual water concept: Case of South Khorasan Province, Iran. Water, 11(3), 449.

    Article  Google Scholar 

  • Raskin, P., Gleick, P., Kirshen, P., Pontius, G., & Strzepek, K. (1997). Water futures: assessment of long-range patterns and problems. Comprehensive assessment of the freshwater resources of the world. SEI.‏

  • Safdari, M., Hekmatnia, S. H. M., & Moghadam, A. D. (2022). The water footprint of consumption and virtual water trade of dates in Iran. Water and Soil Science, 32(4), 133–145. https://doi.org/10.22034/WS.2021.12338

    Article  Google Scholar 

  • Sullivan, C. (2002). Calculating a water poverty index. World Development, 30(7), 1195–1210.

    Article  Google Scholar 

  • van Leeuwen, K., & Sjerps, R. (2016). Istanbul: The challenges of integrated water resources management in Europa’s megacity. Environment, Development and Sustainability, 18, 1–17.

    Article  Google Scholar 

  • van Vliet, M. T., Flörke, M., & Wada, Y. (2017). Quality matters for water scarcity. Nature Geoscience, 10(11), 800–802.

    Article  Google Scholar 

  • Wang, X. J., Zhang, J. Y., Liu, J. F., Wang, G. Q., He, R. M., Elmahdi, A., & Elsawah, S. (2011). Water resources planning and management based on system dynamics: A case study of Yulin city. Environment, Development and Sustainability, 13, 331–351.

    Article  Google Scholar 

  • Yan, Y., Wang, R., Chen, S., Zhang, Y., & Sun, Q. (2023). Three-dimensional agricultural water scarcity assessment based on water footprint: A study from a humid agricultural area in China. Science of the Total Environment, 857, 159407.

    Article  CAS  Google Scholar 

  • Zare-Bidaki, R., Pouyandeh, M., & Zamani-Ahmadmahmoodi, R. (2023). Applying the enhanced water poverty index (eWPI) to analyze water scarcity and income poverty relation in Beheshtabad Basin, Iran. Applied Water Science, 13(2), 53.

    Article  Google Scholar 

  • Zhao, F., Wang, X., Wu, Y., & Singh, S. K. (2023). Prefectures vulnerable to water scarcity are not evenly distributed across China. Communications Earth & Environment, 4(1), 145.

    Article  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

Shahla Dehghanpir (data collection, methodology, and analysis) Ommolbanin Bazrafshan, Hadi Ramezani Etedali, Arashk Holisaz and Brian Collins (conceptualization, supervision, writing, review, writing-review and editing).

Corresponding author

Correspondence to Ommolbanin Bazrafshan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghanpir, S., Bazrafshan, O., Ramezani Etedali, H. et al. Water scarcity assessment in Iran’s agricultural sector using the water footprint concept. Environ Dev Sustain (2023). https://doi.org/10.1007/s10668-023-03852-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-023-03852-3

Keywords

Navigation