Skip to main content

Advertisement

Log in

Assessing the cropping intensity dynamics of the Gosaba CD block of Indian Sundarbans using satellite-based remote sensing

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Food availability is one of the dimensions of food security, and it is necessary to analyze the crop production scenario to estimate the availability of food in a region. Cropping sequence and cropping intensity indicate the seasonal crop production, thereby indicating the seasonal availability of food. Seasonal variation of per capita or per household availability of the cropped land determines the food security status of a given region. In Indian Sundarbans region, people’s livelihood is seriously threatened by the food insecurity. The present study aimed to determine the seasonality of cropped land as well as the cropping intensities of Gosaba CD block of Indian Sundarbans during 2017–2018, 2018–2019 and 2019–2020 cropping years using Multi-dated Sentinel-2 data. Rule-based classification was applied for cropping sequence and cropping intensity mapping. Winter season cropped land was the lowest (< 16% of the village area). The area under crop–fallow–crop sequence (200% cropping intensity) decreased, while the area under crop–fallow–fallow (100% cropping intensity) sequence increased. Area under 300% cropping intensity gradually decreased. The average cropping intensity changed from 150% in 2017–2018 to 124% and 136% in 2018–2019 and 2019–2020, respectively. Large variation of the seasonal cropped land per household was estimated, and it became the worst during winter when it became less than 0.5 bighas (0.07 ha). Crop cultivation during dry season depended on the rainfall pattern and surface water availability. The present study successfully addressed the cropping scenario and food insecurity of the study area, and hopefully, it will help the planners and policy makers to take necessary actions for cropping intensification and ensuring food security in the Indian Sundarbans region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

My manuscript has data included as the electronic supplementary materials.

References

  • Ahmed, A. U., Hill, R. V., Smith, L. C., Wiesmann, D. M., Frankenberger, T., Gulati, K., Quabili, W., & Yohannes, Y. (2007). The world’s most deprived: characteristics and causes of extreme poverty and hunger. Intl Food Policy Res Inst publishing.

    Google Scholar 

  • Atkinson, P. M., Jeganathan, C., Dash, J., & Atzberger, C. (2012). Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sensing of Environment, 123, 400–417. https://doi.org/10.1016/j.rse.2012.04.001

    Article  ADS  Google Scholar 

  • Balaguru, K., Taraphdar, S., Leung, L. R., & Foltz, G. R. (2014). Increase in the intensity of postmonsoon Bay of Bengal tropical cyclones. Geophysical Research Letters, 41(10), 3594–3601. https://doi.org/10.1002/2014GL060197

    Article  ADS  Google Scholar 

  • Belgiu, M., & Csillik, O. (2018). Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sensing of Environment, 204, 509–523. https://doi.org/10.1016/j.rse.2017.10.005

    Article  ADS  Google Scholar 

  • Bell, R. W., Mainuddin, M., Barrett-Lennard, E. G., Sarangi, S. K., Maniruzzaman, M., Brahmachari, K., Sarkar, K. K., Burman, D., Gaydon, D. S., Kirby, J. M., Glover, M., Rashid, H., Khan, S. I., Kabir, M. E., Rahman, M. A., & Hossain, M. B. (2019). Cropping systems intensification in the coastal zone of the Ganges delta: Opportunities and risks. J. Indian Soc. Coast. Agric. Res, 37, 153–161.

    Google Scholar 

  • Bera, A., Meraj, G., Kanga, S., Farooq, M., Singh, S. K., Sahu, N., & Kumar, P. (2022). Vulnerability and risk assessment to climate change in Sagar Island. India. Water, 14(5), 823. https://doi.org/10.3390/w14050823

    Article  Google Scholar 

  • Bhadra, T., Das, S., Hazra, S., & Barman, B. C. (2018). Assessing the demand, availability and accessibility of potable water in Indian Sundarban biosphere reserve area. Int J Recent Sci Res, 9(3), 25437–25525.

    Google Scholar 

  • Bhardwaj, P., & Singh, O. (2020). Climatological characteristics of Bay of Bengal tropical cyclones: 1972–2017. Theoretical and Applied Climatology, 139(1), 615–629. https://doi.org/10.1007/s00704-019-02989-4

    Article  ADS  Google Scholar 

  • Biswakarma, P., Singh, M., Sarma, A. K., & Joshi, V. (2021). Assessment of the water inundation area due to the tropical cyclone Bulbul (2019) in the selected districts of West Bengal, India with the application of RS and GIS tools. Proceedings of the Indian National Science Academy, 87(4), 628–639. https://doi.org/10.1007/s43538-021-00056-z

    Article  Google Scholar 

  • Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123–140. https://doi.org/10.1007/BF00058655

    Article  Google Scholar 

  • Brown, S., & Nicholls, R. J. (2015). Subsidence and human influences in mega deltas: The case of the Ganges–Brahmaputra–Meghna. Science of the Total Environment, 527, 362–374. https://doi.org/10.1016/j.scitotenv.2015.04.124

    Article  ADS  CAS  PubMed  Google Scholar 

  • Butt, A., Shabbir, R., Ahmad, S. S., & Aziz, N. (2015). Land use change mapping and analysis using remote sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan. The Egyptian Journal of Remote Sensing and Space Science, 18(2), 251–259. https://doi.org/10.1016/j.ejrs.2015.07.003

    Article  Google Scholar 

  • Chakrabarty, M. (2016). Climate change and food security in India. Observer Research Foundation (ORF): New Delhi, India.

  • Chandra, K. J. (2012) A survey on the production and marketing of mud crab, Scylla serrata (forskal, 1755) in the south-west part of Bangladesh. International Research Journal of Applied Life Sciences, 1(3)

  • Cian, F., Marconcini, M., & Ceccato, P. (2018). Normalized Difference Flood Index for rapid flood mapping: Taking advantage of EO big data. Remote Sensing of Environment, 209, 712–730. https://doi.org/10.1016/j.rse.2018.03.006

    Article  ADS  Google Scholar 

  • Cochran, W. G. (1977). Sampling techniques (3rd ed.). Wiley.

    Google Scholar 

  • Das, B. (2013). Global warming and pattern of main economy in Sundarban. International Journal of Trends in Economics Management & Technology (IJTEMT), 2(1).

  • DasGupta, R., Hashimoto, S., Okuro, T., & Basu, M. (2019). Scenario-based land change modelling in the Indian Sundarban delta: An exploratory analysis of plausible alternative regional futures. Sustainability Science, 14(1), 221–240. https://doi.org/10.1007/s11625-018-0642-6

    Article  Google Scholar 

  • Debnath, A. (2013). Condition of agricultural productivity of Gosaba CD Block, South24 Parganas, West Bengal, India after severe cyclone Aila. International Journal of Scientific and Research Publications, 3(7), 1–4.

    Google Scholar 

  • Debnath, A. (2018). Land use and land cover change detection of Gosaba Island of the Indian Sundarban region by using multitemporal satellite image. International Journal of Humanities & Social Science, 7(1), 209–217.

    Google Scholar 

  • Feng, S., Zhao, J., Liu, T., Zhang, H., Zhang, Z., & Guo, X. (2019). Crop type identification and mapping using machine learning algorithms and sentinel-2 time series data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(9), 3295–3306. https://doi.org/10.1109/JSTARS.2019.2922469

    Article  ADS  Google Scholar 

  • Fonseca, L. M., Domingues, J. P., & Dima, A. M. (2020). Mapping the sustainable development goals relationships. Sustainability, 12(8), 3359. https://doi.org/10.3390/su12083359

    Article  Google Scholar 

  • Friedl, M. A., McIver, D. K., Hodges, J. C., Zhang, X. Y., Muchoney, D., Strahler, A. H., & Baccini, A. (2002). Global land cover mapping from MODIS: Algorithms and early results. Remote Sensing of Environment, 83(1–2), 287–302. https://doi.org/10.1016/S0034-4257(02)00078-0

    Article  ADS  Google Scholar 

  • Fu, B., Wang, S., Zhang, J., Hou, Z., & Li, J. (2019). Unravelling the complexity in achieving the 17 sustainable-development goals. National Science Review, 6(3), 386–388. https://doi.org/10.1093/nsr/nwz038

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh, U., & Bose, S. (2018). Climate change: a threat to child food security in the Indian Sundarbans.

  • Ghosh, A., Nanda, M. K., & Sarkar, D. (2021). Assessing the spatial variation of cropping intensity using multi-temporal Sentinel-2 data by rule-based classification. Environment, Development and Sustainability,. https://doi.org/10.1007/s10668-021-01885-0

    Article  PubMed  Google Scholar 

  • Ghosh, A., Nanda, M. K., Sarkar, D., Sarkar, S., Brahmachari, K., & Ray, K. (2019). Application of multi-dated sentinel-2 imageries to assess the cropping system in Gosaba Island of Indian Sundarbans. Journal of Indian Society of Coastal Agricultural Research, 37(2), 32–44.

    Google Scholar 

  • Ghosh, S., & Mistri, B. (2020). Coastal agriculture and its challenges: A case study in Gosaba Island, Sundarban. India. Space and Culture India, 8(2), 140–154.

    Article  Google Scholar 

  • Ghosh, T., Bhandari, G., & Hazra, S. (2003). Application of a ‘bio-engineering’technique to protect Ghoramara Island (Bay of Bengal) from severe erosion. Journal of Coastal Conservation, 9(2), 171–178. https://doi.org/10.1652/1400-0350(2003)009[0171:AOABTT]2.0.CO;2

    Article  Google Scholar 

  • Ghosh, T., Hajra, R., & Mukhopadhyay, A. (2014). Island erosion and afflicted population: crisis and policies to handle climate change. In W. L. Filho, F. Alves, S. Caeiro, & U. M. Azeiteiro (Eds.), BT-international perspectives on climate change: Latin America and beyond (pp. 217–225). Springer International Publishing.

    Chapter  Google Scholar 

  • Giannetti, F., Pegna, R., Francini, S., McRoberts, R. E., Travaglini, D., Marchetti, M., & Chirici, G. (2020). A new method for automated clearcut disturbance detection in mediterranean coppice forests using landsat time series. Remote Sensing, 12(22), 3720. https://doi.org/10.3390/rs12223720

    Article  ADS  Google Scholar 

  • Gray, J., Friedl, M., Frolking, S., Ramankutty, N., Nelson, A., & Gumma, M. K. (2014). Mapping Asian cropping intensity with MODIS. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(8), 3373–3379. https://doi.org/10.1109/JSTARS.2014.2344630

    Article  ADS  Google Scholar 

  • Guha, I., & Roy, C. (2016). Climate change, migration and food security: Evidence from Indian Sundarbans. International Journal of Theoretical and Applied Sciences, 8(2), 45–49.

    Google Scholar 

  • Haque, M., Alam, M., Moniruzzaman, S., & Hoque, M. (2019). The impact of climate change in the coastal areas of Bangladesh affected by cyclone bulbul. Bangladesh Journal of Extension Education, 31(1&2), 13–27.

  • Haldar, A., & Debnath, A. (2014). Assessment of climate induced soil salinity conditions of Gosaba Island, West Bengal and its influence on local livelihood. Climate change and biodiversity (pp. 27–44). Springer.

    Chapter  Google Scholar 

  • Halder, B., Ameen, A. M. S., Bandyopadhyay, J., Khedher, K. M., & Yaseen, Z. M. (2022). The impact of climate change on land degradation along with shoreline migration in Ghoramara Island, India. Physics and Chemistry of the Earth, Parts a/b/c, 126, 103135.

    Article  Google Scholar 

  • Hazra, S., Bhadra, T., & Roy, S. P. (2015). Sustainable water resource management in the Indian Sundarban Delta. In Proceedings of the international seminar on challenges to ground water management: vision (Vol. 2050, pp. 324–332).

  • Hazra, S., Bhadra, T., & Ray, S. P. (2019). Sustainable water resource management in the Sundarban biosphere reserve, India. Ground water development-issues and sustainable solutions (pp. 147–157). Springer.

    Chapter  Google Scholar 

  • https://clim-engine.appspot.com/climateEngine. Retrieved on 09.01.2021

  • https://censusindia.co.in/. Retrieved on 24.08.2021

  • https://icar.org.in/files/state-specific/chapter/3.htm. Retrieved on 13.04.2022

  • https://wb.gov.in/departments-details.aspx?id=D170907140022669p&page=Agriculture. Retrieved on 13.04.2022

  • Ibrahim, E. S., Rufin, P., Nill, L., Kamali, B., Nendel, C., & Hostert, P. (2021). Mapping crop types and cropping systems in nigeria with sentinel-2 imagery. Remote Sensing, 13(17), 3523. https://doi.org/10.3390/rs13173523

    Article  ADS  Google Scholar 

  • Iqbal, M., & Amjad, R. (2012). Food security in South Asia: Strategies and programmes for regional collaboration. Regional integration and economic development in South Asia. Edward Elgar Publishing.

    Google Scholar 

  • Jain, M., Mondal, P., DeFries, R. S., Small, C., & Galford, G. L. (2013). Mapping cropping intensity of smallholder farms: A comparison of methods using multiple sensors. Remote Sensing of Environment, 134, 210–223. https://doi.org/10.1016/j.rse.2013.02.029

    Article  ADS  Google Scholar 

  • Jiang, Y., Lu, Z., Li, S., Lei, Y., Chu, Q., Yin, X., & Chen, F. (2020). Large-scale and high-resolution crop mapping in china using Sentinel-2 satellite imagery. Agriculture, 10(10), 433. https://doi.org/10.3390/agriculture10100433

    Article  Google Scholar 

  • Kuenzer, C., & Knauer, K. (2013). Remote sensing of rice crop areas. International Journal of Remote Sensing, 34(6), 2101–2139. https://doi.org/10.1080/01431161.2012.738946

    Article  ADS  Google Scholar 

  • Kumar, R., Rani, S., & Maharana, P. (2021). Assessing the impacts of Amphan cyclone over West Bengal, India: A multi-sensor approach. Environmental Monitoring and Assessment, 193(5), 1–21. https://doi.org/10.1007/s10661-021-09071-5

    Article  Google Scholar 

  • Lal, R. (2007). Soil degradation and environment quality in south Asia. International Journal of Ecology and Environmental Sciences, 33(2–3), 91–103.

    Google Scholar 

  • Leal Filho, W., Tripathi, S. K., Andrade Guerra, J. B. S. O. D., Giné-Garriga, R., Orlovic Lovren, V., & Willats, J. (2019). Using the sustainable development goals towards a better understanding of sustainability challenges. International Journal of Sustainable Development & World Ecology, 26(2), 179–190. https://doi.org/10.1080/13504509.2018.1505674

    Article  Google Scholar 

  • Liu, C., Zhang, Q., Tao, S., Qi, J., Ding, M., Guan, Q., & Elnashar, A. (2020a). A new framework to map fine resolution cropping intensity across the globe: Algorithm, validation, and implication. Remote Sensing of Environment, 251, 112095. https://doi.org/10.1016/j.rse.2020.112095

    Article  Google Scholar 

  • Liu, L., Xiao, X., Qin, Y., Wang, J., Xu, X., Hu, Y., & Qiao, Z. (2020b). Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine. Remote Sensing of Environment, 239, 111624. https://doi.org/10.1016/j.rse.2019.111624

    Article  Google Scholar 

  • Mainuddin, M., Bell, R. W., Gaydon, D. S., Kirby, J. M., Barrett-Lennard, E. G., Glover, M., Akanda, M. A. R., Maji, B., Ali, M. A., Brahmachari, K., Maniruzzaman, M., Aziz, M. A., Burman, D., Biswas, J. C., Rahman, M. M., & Sarangi, S. K. (2019). An overview of the Ganges coastal zone: Climate, hydrology, land use, and vulnerability. Journal of the Indian Society of the Coastal Agricultural Research, 37(2), 1–11.

    Google Scholar 

  • Mandal, S., Choudhury, B. U., Mondal, M., & Bej, S. (2013). Trend analysis of weather variables in Sagar Island, West Bengal, India: a long-term perspective (1982–2010). Current Science, 105, 947–953.

    Google Scholar 

  • Mandal, U. K., Nayak, D. B., Mullick, S., Samui, A., Jana, A. K., Mahanta, K. K., & Burman, D. (2019). Trend analysis of weather parameters over Indian Sundarbans. Journal of Agrometeorology, 21(3), 307–615.

    Article  Google Scholar 

  • Maponya, M. G., Van Niekerk, A., & Mashimbye, Z. E. (2020). Pre-harvest classification of crop types using a Sentinel-2 time-series and machine learning. Computers and Electronics in Agriculture, 169, 105164. https://doi.org/10.1016/j.compag.2019.105164

    Article  Google Scholar 

  • Marcinko, C. L., Nicholls, R. J., Daw, T. M., Hazra, S., Hutton, C. W., Hill, C. T., & Mondal, P. P. (2021). The development of a framework for the integrated assessment of SDG trade-offs in the Sundarban biosphere reserve. Water, 13(4), 528. https://doi.org/10.3390/w13040528

    Article  Google Scholar 

  • Marshall, M., & Thenkabail, P. (2015). Developing in situ non-destructive estimates of crop biomass to address issues of scale in remote sensing. Remote Sensing, 7(1), 808–835. https://doi.org/10.3390/rs70100808

    Article  ADS  Google Scholar 

  • Mellor, A., Haywood, A., Jones, S. and Wilkes, P. (2012, August) Forest classification using random forests with multisource remote sensing and ancillary GIS data. In Proceedings of 16th Australian Remote Sensing and Photogrammetry Conference, Melbourne, VIC, Australia (Vol. 2728).

  • Miller, R. B., & Small, C. (2003). Cities from space: Potential applications of remote sensing in urban environmental research and policy. Environmental Science & Policy, 6(2), 129–137. https://doi.org/10.1016/S1462-9011(03)00002-9

    Article  Google Scholar 

  • Mishra, D., & Singh, B. N. (2019). Derivation of magnitude of crop diversity through NDVI composite index using sentinel-2 satellite imagery. Journal of the Indian Society of Remote Sensing, 47(5), 893–906. https://doi.org/10.1007/s12524-019-00951-5

    Article  Google Scholar 

  • Mohapatra, M., & Vijay Kumar, V. (2017). Interannual variation of tropical cyclone energy metrics over North Indian Ocean. Climate Dynamics, 48(5), 1431–1445. https://doi.org/10.1007/s00382-016-3150-3

    Article  ADS  Google Scholar 

  • Mondal, M., Biswas, A., Haldar, S., Mandal, S., Mandal, P., Bhattacharya, S., & Paul, S. (2022). Climate change, multi-hazards and society: An empirical study on the coastal community of Indian Sundarban. Natural Hazards Research, 2(2), 84–96. https://doi.org/10.1016/j.nhres.2022.04.002

    Article  Google Scholar 

  • Mondal, M., Haldar, S., Biswas, A., Mandal, S., Bhattacharya, S., & Paul, S. (2021). Modeling cyclone-induced multi-hazard risk assessment using analytical hierarchical processing and GIS for coastal West Bengal India. Regional Studies in Marine Science, 44, 101779. https://doi.org/10.1016/j.rsma.2021.101779

    Article  Google Scholar 

  • Morell-Monzó, S., Estornell, J., & Sebastiá-Frasquet, M. T. (2020). Comparison of Sentinel-2 and high-resolution imagery for mapping land abandonment in fragmented areas. Remote Sensing, 12(12), 2062. https://doi.org/10.3390/rs12122062

    Article  ADS  Google Scholar 

  • Mukhopadhyay, R., Sarkar, B., Jat, H. S., Sharma, P. C., & Bolan, N. S. (2021). Soil salinity under climate change: Challenges for sustainable agriculture and food security. Journal of Environmental Management, 280, 111736. https://doi.org/10.1016/j.jenvman.2020.111736

    Article  CAS  PubMed  Google Scholar 

  • Myers, S. S., Zanobetti, A., Kloog, I., Huybers, P., Leakey, A. D., Bloom, A. J., & Usui, Y. (2014). Increasing CO2 threatens human nutrition. Nature, 510(7503), 139–142.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., & Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148, 42–57. https://doi.org/10.1016/j.rse.2014.02.015

    Article  ADS  Google Scholar 

  • Pan, L., Xia, H., Yang, J., Niu, W., Wang, R., Song, H., & Qin, Y. (2021). Mapping cropping intensity in Huaihe basin using phenology algorithm, all Sentinel-2 and Landsat images in Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation, 102, 102376. https://doi.org/10.1016/j.jag.2021.102376

    Article  Google Scholar 

  • Paul, B. K., Rashid, H., Islam, M. S., & Hunt, L. M. (2010). Cyclone evacuation in Bangladesh: tropical cyclones Gorky (1991) vs. Sidr (2007). Environmental Hazards, 9(1), 89–101. https://doi.org/10.3763/ehaz.2010.SI04

    Article  Google Scholar 

  • Prosekov, A. Y., & Ivanova, S. A. (2018). Food security: The challenge of the present. Geoforum, 91, 73–77. https://doi.org/10.1016/j.geoforum.2018.02.030

    Article  Google Scholar 

  • Qiu, B., Lu, D., Tang, Z., Song, D., Zeng, Y., Wang, Z., & Xu, W. (2017). Mapping cropping intensity trends in China during 1982–2013. Applied Geography, 79, 212–222. https://doi.org/10.1016/j.apgeog.2017.01.001

    Article  Google Scholar 

  • Qiu, B., Wang, Z., Tang, Z., Chen, C., Fan, Z., & Li, W. (2016). Automated cropping intensity extraction from isolines of wavelet spectra. Computers and Electronics in Agriculture, 125, 1–11. https://doi.org/10.1016/j.compag.2016.04.015

    Article  Google Scholar 

  • Ramoelo, A., Cho, M., Mathieu, R., & Skidmore, A. K. (2015). Potential of Sentinel-2 spectral configuration to assess rangeland quality. Journal of Applied Remote Sensing, 9(1), 094096. https://doi.org/10.1117/1.JRS.9.094096

    Article  Google Scholar 

  • Ramteke, I. K., Obi Reddy, G. P., Sen, T. K., Singh, S. K., Chatterji, S., Rajankar, P. B. and Das, S. N. (2017). Land use/land cover change dynamics in coastal ecosystem of sundarban delta, West Bengal-a case study of Bali Island.

  • Rasul, G. (2016). Managing the food, water, and energy nexus for achieving the sustainable development goals in South Asia. Environmental Development, 18, 14–25. https://doi.org/10.1016/j.envdev.2015.12.001

    Article  ADS  Google Scholar 

  • Ray, K., Brahmachari, M., Goswami, R., Sarkar, S., Brahmachari, K., Ghosh, A., & Nanda, M. K. (2019). Adoption of improved technologies for cropping intensification in the coastal zone of West Bengal, India: A village level study for impact assessment. Journal of the Indian Society of the Coastal Agricultural Research, 37(2), 144–152.

    Google Scholar 

  • Richards, J. F., & Flint, E. P. (1990). Long-term transformations in the Sundarbans wetlands forests of Bengal. Agriculture and Human Values, 7(2), 17–33.

    Article  Google Scholar 

  • Rodriguez-Galiano, V. F., Chica-Olmo, M., Abarca-Hernandez, F., Atkinson, P. M., & Jeganathan, C. (2012). Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sensing of Environment, 121, 93–107. https://doi.org/10.1016/j.rse.2011.12.003

    Article  ADS  Google Scholar 

  • Roy, C., & Guha, I. (2017). Economics of climate change in the Indian Sundarbans. Global Business Review, 18(2), 493–508.

    Article  Google Scholar 

  • Sahana, M., Rehman, S., Ahmed, R., & Sajjad, H. (2021). Analyzing climate variability and its effects in Sundarban biosphere Reserve, India: Reaffirmation from local communities. Environment, Development and Sustainability, 23(2), 2465–2492. https://doi.org/10.1007/s10668-020-00682-5

    Article  Google Scholar 

  • Samanta, B. (2018). Population growth in sundarbans region–a spatio-temporal analysis sch. Journal of Arts Humanities Social Sciences, 6, 877–883.

    Google Scholar 

  • Samanta, K., & Hazra, S. (2012). Landuse/landcover change study of Jharkhali Island Sundarbans, West Bengal using remote sensing and GIS. International Journal of Geomatics and Geosciences, 3(2), 299–306.

    Google Scholar 

  • Sarkar, S., Ghosh, A., Brahmachari, K., Ray, K., Nanda, M. K., & Sarkar, D. (2020). Weather relation of rice-grass pea crop sequence in Indian Sundarbans. J Agrometeorol, 22(2), 148–157.

    Article  Google Scholar 

  • Sarkar, S., Ghosh, A., Brahmachari, K., Ray, K., & Nanda, M. K. (2021). Assessing the yield response of lentil (Lens culinaris medikus) as influenced by different sowing dates and land situations in Indian Sundarbans. Legume Research-An International Journal, 44(10), 1203–1210.

  • Sarkar, S., & Padaria, R. N. (2016). Farmers’ awareness and risk perception about climate change in coastal ecosystem of West Bengal. Indian Research Journal of Extension Education, 10(2), 32–38.

    Google Scholar 

  • Sarkar, S., Samui, I., Brahmachari, K., Ray, K., Ghosh, A., & Nanda, M. K. (2019). Management practices for utera pulses in rice-fallow system under coastal saline zone of West Bengal. Journal of the Indian Society of Coastal Agricultural Research, 37(2), 98–103.

    Google Scholar 

  • Satyawan, M. Y., & Hooda, R. S. (2014). Cropping System analysis using geospatial approach: A case study of Sirsa district in Haryana, India. International Journal of Science and Research., 3(9), 2161–2167.

    Google Scholar 

  • Sen, H. S., & Ghorai, D. (2019). The Sundarbans: A flight into the wilderness. In H. S. Sen (Ed.), BT-The Sundarbans: A disaster-prone eco-region: increasing livelihood security (pp. 3–28). Springer International Publishing, Cham.

    Chapter  Google Scholar 

  • Singh, O. P. (2007). Long-term trends in the frequency of severe cyclones of Bay of Bengal: Observations and simulations. Mausam, 58(1): 59–66.

  • Stehman, S. (1996). Estimating the kappa coefficient and its variance under stratified random sampling. Photogrammetric Engineering and Remote Sensing, 62(4), 401–407.

    Google Scholar 

  • Sumner, A. (2012). Where do the poor live? World Development, 40(5), 865–877. https://doi.org/10.1016/j.worlddev.2011.09.007

    Article  Google Scholar 

  • Tao, J., Wu, W., & Xu, M. (2019). Using the Bayesian Network to map large-scale cropping intensity by fusing multi-source data. Remote Sensing, 11(2), 168. https://doi.org/10.3390/rs11020168

    Article  ADS  Google Scholar 

  • Thakur, S., Maity, D., Mondal, I., Basumatary, G., Ghosh, P. B., Das, P., & De, T. K. (2021a). Assessment of changes in land use, land cover, and land surface temperature in the mangrove forest of Sundarbans, northeast coast of India. Environment, Development and Sustainability, 23(2), 1917–1943. https://doi.org/10.1016/j.jclepro.2020.124764

    Article  Google Scholar 

  • Thakur, S., Mondal, I., Bar, S., Nandi, S., Ghosh, P. B., Das, P., & De, T. K. (2021b). Shoreline changes and its impact on the mangrove ecosystems of some islands of Indian Sundarbans, North-East coast of India. Journal of Cleaner Production, 284, 124764. https://doi.org/10.1016/j.jclepro.2020.124764

    Article  Google Scholar 

  • Tiwari, G., Rameshan, A., Kumar, P., Javed, A., & Mishra, A. K. (2022). Understanding the post-monsoon tropical cyclone variability and trend over the Bay of Bengal during the satellite era. Quarterly Journal of the Royal Meteorological Society, 148(742), 1–14. https://doi.org/10.1002/qj.4189

    Article  ADS  Google Scholar 

  • Veloso, A., Mermoz, S., Bouvet, A., Le Toan, T., Planells, M., Dejoux, J. F., & Ceschia, E. (2017). Understanding the temporal behavior of crops using sentinel-1 and sentinel-2-like data for agricultural applications. Remote Sensing of Environment, 199, 415–426. https://doi.org/10.1016/j.rse.2017.07.015

    Article  ADS  Google Scholar 

  • Vuolo, F., Neuwirth, M., Immitzer, M., Atzberger, C., & Ng, W. T. (2018). How much does multi-temporal Sentinel-2 data improve crop type classification? International Journal of Applied Earth Observation and Geoinformation, 72, 122–130. https://doi.org/10.1016/j.jag.2018.06.007

    Article  ADS  Google Scholar 

  • Wu, W., You, L., & Chen, K. (2015). Cropping intensity gaps: The potential for expanded global harvest areas. IFPRI Discussion Paper 01459. https://ssrn.com/abstract=2685300.

  • Yan, H., Liu, F., Qin, Y., Doughty, R., & Xiao, X. (2019). Tracking the spatio-temporal change of cropping intensity in China during 2000–2015. Environmental Research Letters, 14(3), 035008. https://doi.org/10.1088/1748-9326/aaf9c7

    Article  ADS  Google Scholar 

  • Yang, N., Liu, D., Feng, Q., Xiong, Q., Zhang, L., Ren, T., & Huang, J. (2019). Large-scale crop mapping based on machine learning and parallel computation with grids. Remote Sensing, 11(12), 1500. https://doi.org/10.3390/rs11121500

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Australian Centre for International Agricultural Research (ACIAR) through the project CSI4CZ going on Bidhan Chandra Krishi Viswavidyalaya. The ground support provided by the Tagore Society for Rural Development (TSRD) and the farmers of the Gosaba Block of Indian Sundarbans are sincerely acknowledged for their unconditional cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Argha Ghosh.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest/competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 81 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Nanda, M.K., Sarkar, D. et al. Assessing the cropping intensity dynamics of the Gosaba CD block of Indian Sundarbans using satellite-based remote sensing. Environ Dev Sustain 26, 6341–6376 (2024). https://doi.org/10.1007/s10668-023-02966-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-023-02966-y

Keywords

Navigation