Skip to main content

Advertisement

Log in

Temporal and spatial characteristics of drought, future changes and possible drivers over Upper Awash Basin, Ethiopia, using SPI and SPEI

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Drought is a global problem that affects particularly agricultural and water resources. The spatiotemporal drought characteristics and their possible drivers over Upper Awash Basin (UAB) were assessed in magnitude, duration, frequency, and intensity. Gridded data and a statistical downscaling model (SDSM) were used for historical projection. The Standardized Precipitation Index (SPI) and Standardized Evapotranspiration Index (SPEI) at 4- and 12-month timescales were used to compute the drought. The SPI 4-and 12-months indicate 1984, 1987, 2002, 2015, and 2016 years of dominant drought. Persistent dry events were observed in the west, northwestern, and some eastern parts of the study area in Representative Concentration Pathways (RCP) 4.5 and 8.5 scenarios. Trend analysis of seasonal shows that a statistically significant (P < 0.05) increasing trend during the main cropping seasons and annual drought events were detected in almost all basin parts. Near future projections in the two (RCP4.5 and RCP8.5) scenarios exhibited the continuation of drought up to 2030s and mid-2040s extreme and severe dryness, respectively. The seasonal and annual analysis projection indicates a decrease in dry events from 2050 onwards. The detected periodicity of dryness/wetness agreed with the negative/positive phase of SOI/ ENSO (Nino3.4) during Belg and the positive/negative phase during Kiremt and annual (SPI4/SPEI4). The possible driving forces of these drought events were land use/cover changes such as land degradation and urbanization. Global indices IOD, SOI, and ENSO (NINO3.4) are drivers that caused the seasonal droughts. These findings are useful for better preparedness priorities that suggest developing basin-wide targeted interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data

Additional data will available upon request.

Notes

  1. https://sdsm.org.uk/software.html

  2. https://climate-scenarios.canada.ca/?page=pred-canesm2

  3. https://psl.noaa.gov/gcos_wgsp/Timeseries/

References

  • Adane, G. B., Hirpa, B. A., Lim, C. H., & Lee, W. K. (2020). Spatial and temporal analysis of dry and wet spells in upper awash river basin, ethiopia. Water. https://doi.org/10.3390/w12113051

    Article  Google Scholar 

  • Ahmadalipour, A., Moradkhani, H., & Demirel, M. C. (2017). A comparative assessment of projected meteorological and hydrological droughts: elucidating the role of temperature. Civil and Environmental Engineering Faculty Publications and Presentations. https://doi.org/10.1016/j.jhydrol.2017.08.047

    Article  Google Scholar 

  • Ahmed, K., Shahid, S., Harun, S. B., & Wang, X. (2016). Characterization of seasonal droughts in Balochistan Province, Pakistan. Stochastic Environmental Research and Risk Assessment, 30(2), 747–762. https://doi.org/10.1007/s00477-015-1117-2

    Article  Google Scholar 

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56.

  • Ayugi, B., Shilenje, Z. W., Lim, K. T. C., Sian, K., Mumo, R., Dike, V. N., Chehbouni, A., & Ongoma, V. (2021). Projected Changes in Meteorological Drought Over East Africa Inferred from Bias-Adjusted CMIP6 Models. https://doi.org/10.21203/rs.3.rs-983012/v1

  • Ayugi, B., Tan, G., Rouyun, N., Zeyao, D., Ojara, M., Mumo, L., Babaousmail, H., & Ongoma, V. (2020). Evaluation of meteorological drought and flood scenarios over Kenya, East Africa. Atmosphere. https://doi.org/10.3390/atmos11030307

    Article  Google Scholar 

  • Azazh, B. (2008). Water Allocation Study of Upper Awash Valley for Existing and Future Demands (from Koka Reservoir to Metehara Area). Addis Ababa.

  • Beguería, S., Vicente-Serrano, S. M., Reig, F., & Latorre, B. (2014). Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology, 34(10), 3001–3023. https://doi.org/10.1002/joc.3887

    Article  Google Scholar 

  • Belayneh, A., Adamowski, J., & Khalil, B. (2016). Short-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet transforms and machine learning methods. Sustainable Water Resources Management, 2(1), 87–101. https://doi.org/10.1007/s40899-015-0040-5

    Article  Google Scholar 

  • Below, R., Grover-Kopec, E., & Dilley, M. (2007). Documenting drought-related Disasters: A global reassessment. Journal of Environment and Development, 16(3), 328–344. https://doi.org/10.1177/1070496507306222

    Article  Google Scholar 

  • Bezu, A. (2020). Analyzing impacts of climate variability and changes in Ethiopia: A review. American Journal of Modern Energy, 6(3), 65. https://doi.org/10.11648/j.ajme.20200603.11

    Article  Google Scholar 

  • Bhaga, T. D., Dube, T., Shekede, M. D., & Shoko, C. (2020). Impacts of climate variability and drought on surface water resources in sub-saharan africa using remote sensing: A review. Remote Sensing., 12(24), 1–34. https://doi.org/10.3390/rs12244184

    Article  Google Scholar 

  • Bobrowsky, P. T. (2013). Encyclopedia of Natural Hazards. In P. T. Bobrowsky (Ed.). Springer: Netherlands. https://doi.org/10.1007/978-1-4020-4399-4

  • Burnett, D. (2013). Stage 2-supporting climate resilient value chains. UK Department for International Development (DFID). https://doi.org/10.12774/eod_cr.april2015.burnettd

  • Cook, K. H., Fitzpatrick, R. G. J., Liu, W., & Vizy, E. K. (2020). Seasonal asymmetry of equatorial East African rainfall projections: Understanding differences between the response of the long rains and the short rains to increased greenhouse gases. Climate Dynamics, 55(7–8), 1759–1777. https://doi.org/10.1007/s00382-020-05350-y

    Article  Google Scholar 

  • Dai, A. (2011). Drought under global warming: A review. In Wiley Interdisciplinary Reviews: Climate Change (Vol. 2, Issue 1, pp. 45–65). Wiley-Blackwell. https://doi.org/10.1002/wcc.81

  • Degefu, M. A., & Bewket, W. (2015). Trends and spatial patterns of drought incidence in the Omo-Ghibe River Basin, Ethiopia. Geografiska Annaler, Series a: Physical Geography, 97(2), 395–414. https://doi.org/10.1111/geoa.12080

    Article  Google Scholar 

  • Dinku T, Hansen J, Rose A, Damen B, S. M. (2018). Enhancing national climate services ( ENACTS ) approach to support climate resilience in agriculture. In CCAFS Info Note. Wageningen, Netherlands: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). (Issue December).

  • Dinku, T., Block, P., Sharoff, J., Hailemariam, K., Osgood, D., del Corral, J., Cousin, R., & Thomson, M. C. (2014). Bridging critical gaps in climate services and applications in africa. Earth Perspectives, 1(1), 15. https://doi.org/10.1186/2194-6434-1-15

    Article  Google Scholar 

  • Dubache, G., Ogwang, B. A., Ongoma, V., & Towfiqul Islam, A. R. M. (2019). The effect of Indian Ocean on Ethiopian seasonal rainfall. Meteorology and Atmospheric Physics, 131(6), 1753–1761. https://doi.org/10.1007/s00703-019-00667-8

    Article  Google Scholar 

  • Esayas, B., Simane, B., Teferi, E., Ongoma, V., & Tefera, N. (2018). Trends in extreme climate events over three agroecological zones of Southern Ethiopia. Advances in Meteorology. https://doi.org/10.1155/2018/7354157

    Article  Google Scholar 

  • Fanadzo, M., Ncube, B., French, A., & Belete, A. (2021). Smallholder farmer coping and adaptation strategies during the 2015–18 drought in the Western Cape, South Africa. Physics and Chemistry of the Earth. https://doi.org/10.1016/j.pce.2021.102986

    Article  Google Scholar 

  • Farooqi, Z. U. R., Zia Ur Rehman, M., Sohail, M. I., Usman, M., Khalid, H., & Naz, K. (2020). Regulation of drought stress in plants. In Plant Life under Changing Environment: Responses and Management (pp. 77–104). Elsevier. https://doi.org/10.1016/B978-0-12-818204-8.00004-7

  • Feng, S., Trnka, M., Hayes, M., & Zhang, Y. (2017). Why do different drought indices show distinct future drought risk outcomes in the U.S. Great Plains? Journal of Climate, 30(1), 265–278. https://doi.org/10.1175/JCLI-D-15-0590.1

    Article  Google Scholar 

  • Funk, C. C. (2012). Exceptional warming in the western Pacific-Indian Ocean warm pool has contributed to more frequent droughts in eastern Africa. Bulletin of the American Meteorological Society, 93, 1049–1051.

    Google Scholar 

  • Funk, C., Dettinger, M. D., Michaelson, J., Verdin, J., & Brown, M. E. (2008). The warm ocean dry Africa dipole controls decadal moisture transports threatening food insecure Africa. Proceedings of the National Academy of Sciences, 105, 11081–11086.

    Article  CAS  Google Scholar 

  • Gautam, M. (2006). Managing Drought in Sub-Saharan Africa: Policy Perspectives 1. Economic Consequences and Policies for Mitigation, at the IAAE Conference, Gold Coast, Queensland, Australia, August 12–18, 1–18. www.em-dat.net

  • Gebrechorkos, S. H., Hülsmann, S., & Bernhofer, C. (2019). Regional climate projections for impact assessment studies in East Africa. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ab055a

    Article  Google Scholar 

  • Gebremichael, H. B., Raba, G. A., Beketie, K. T., Feyisa, G. L., & Siyoum, T. (2022). Changes in daily rainfall and temperature extremes of upper Awash Basin Ethiopia. Scientific African. https://doi.org/10.1016/j.sciaf.2022.e01173

    Article  Google Scholar 

  • Gebreyesus, M. (2020). Historical drought characterization in Awash River Basin, Ethiopia. International Journal of Environmental Sciences & Natural Resources., 26(3), 70–77. https://doi.org/10.19080/ijesnr.2020.26.556186

    Article  Google Scholar 

  • Getaneh, Y., Alemu, A., Ganewo, Z., & Haile, A. (2022). Food security status and determinants in North-Eastern rift valley of Ethiopia. Journal of Agriculture and Food Research. https://doi.org/10.1016/j.jafr.2022.100290

    Article  Google Scholar 

  • Gezie, M. (2019). Farmer’s response to climate change and variability in Ethiopia: A review. In Cogent Food and Agriculture (Vol. 5, Issue 1). Informa Healthcare. https://doi.org/10.1080/23311932.2019.1613770

  • Ghebrezgabher, M. G., Yang, T., & Yang, X. (2016). Long-term trend of climate change and drought assessment in the Horn of Africa. Advances in Meteorology. https://doi.org/10.1155/2016/8057641

    Article  Google Scholar 

  • Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1–2), 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003

    Article  Google Scholar 

  • Haile, B. T., Bekitie, K. T., Zeleke, T. T., Ayal, D. Y., Feyisa, G. L., & Anose, F. A. (2022). Drought analysis using standardized evapotranspiration and aridity index at bilate watershed: Sub-Basins of Ethiopian Rift Valley. The Scientific World Journal. https://doi.org/10.1155/2022/1181198

    Article  Google Scholar 

  • Haile, G. G., Tang, Q., Hosseini-Moghari, S. M., Liu, X., Gebremicael, T. G., Leng, G., Kebede, A., Xu, X., & Yun, X. (2020). Projected impacts of climate change on drought patterns over East Africa. Earth’s Future. https://doi.org/10.1029/2020EF001502

    Article  Google Scholar 

  • Halcrow. (2006). Awash River Basin flood control and watershed management study project. Working Paper 2. Review and assessment of community development, settlement patterns and gender in the Awash River Basin (pp 46).

  • Hamed, K. H., & Rao, A. R. (1998). Hydrology A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1–4), 182–196.

    Article  Google Scholar 

  • Hao, Z., & Singh, V. P. (2015). Drought characterization from a multivariate perspective: A review. Journal of Hydrology, 527, 668–678.

    Article  Google Scholar 

  • Hargreaves, G. H., Asce, F., & Allen, R. G. (2003). History and evaluation of Hargreaves evapotranspiration equation. Journal of Irrigation and Drainage Engineering. https://doi.org/10.1061/ASCE0733-94372003129:153

    Article  Google Scholar 

  • Hassan, Z., Shamsudin, S., & Harun, S. (2014). Application of SDSM and LARS-WG for simulating and downscaling of rainfall and temperature. Theoretical and Applied Climatology, 116(1–2), 243–257. https://doi.org/10.1007/s00704-013-0951-8

    Article  Google Scholar 

  • Ho, C. K., Stephenson, D. B., Collins, M., Ferro, C. A. T., & Brown, S. J. (2012). Calibration strategies a source of additional uncertainty in climate change projections. Bulletin of the American Meteorological Society, 93(1), 21–26. https://doi.org/10.1175/2011BAMS3110.1

    Article  Google Scholar 

  • Hua, W., Zhou, L., Chen, H., Nicholson, S. E., Jiang, Y., & Raghavendra, A. (2018). Understanding the Central Equatorial African long-term drought using AMIP-type simulations. Climate Dynamics, 50(3–4), 1115–1128. https://doi.org/10.1007/s00382-017-3665-2

    Article  Google Scholar 

  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3), 437–472.

    Article  Google Scholar 

  • Kaushal, M. (2019). Portraying rhizobacterial mechanisms in drought tolerance. In PGPR Amelioration in Sustainable Agriculture (pp. 195–216). Elsevier. https://doi.org/10.1016/b978-0-12-815879-1.00010-0.

  • Kerim, T., Abebe, A., Hussen, B., Engineering, I., Minch, A., & Minch, A. (2016). Study of water allocation for existing and future demands under changing climate condition: Case of upper Awash Sub River Basin. Journal of Environment and Earth Science, 6(10), 18–31.

    Google Scholar 

  • Kurkura M. (2011). Water Balance of Upper Awash Basin Based on Satellite-Derived Data (Remote Sensing). Addis Ababa University.

  • Łabȩdzki, L. (2007). Estimation of local drought frequency in central Poland using the standardized precipitation index SPI. Irrigation and Drainage, 56(1), 67–77. https://doi.org/10.1002/ird.285

    Article  Google Scholar 

  • Liebmann, B., Hoerling, M. P., Funk, C., Bladé, I., Dole, R. M., Allured, D., Quan, X., Pegion, P., & Eischeid, J. K. (2014). Understanding recent eastern Horn of Africa rainfall variability and change. Journal of Climate, 27(23), 8630–8645. https://doi.org/10.1175/JCLI-D-13-00714.1

    Article  Google Scholar 

  • Lyon, B., & Dewitt, D. G. (2012). A recent and abrupt decline in the East African long rains. Geophysical Research Letters. https://doi.org/10.1029/2011GL050337

    Article  Google Scholar 

  • Mbiriri, M., Mukwada, G., & Manatsa, D. (2019). Spatiotemporal characteristics of severe dry and wet conditions in the Free State Province South Africa. Theoretical and Applied Climatology, 135(1–2), 693–706. https://doi.org/10.1007/s00704-018-2381-0

    Article  Google Scholar 

  • Mckee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Eighth Conference on Applied Climatology.

  • Mekasha, A., Tesfaye, K., & Duncan, A. J. (2014). Trends in daily observed temperature and precipitation extremes over three Ethiopian eco-environments. International Journal of Climatology, 34(6), 1990–1999. https://doi.org/10.1002/joc.3816

    Article  Google Scholar 

  • Mekonen, A. A., Berlie, A. B., & Ferede, M. B. (2020). Spatial and temporal drought incidence analysis in the northeastern highlands of Ethiopia. Geoenvironmental Disasters. https://doi.org/10.1186/s40677-020-0146-4

    Article  Google Scholar 

  • Meza, I., Eyshi Rezaei, E., Siebert, S., Ghazaryan, G., Nouri, H., Dubovyk, O., Gerdener, H., Herbert, C., Kusche, J., Popat, E., Rhyner, J., Jordaan, A., Walz, Y., & Hagenlocher, M. (2021). Drought risk for agricultural systems in South Africa: Drivers, spatial patterns, and implications for drought risk management. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2021.149505

    Article  Google Scholar 

  • Mohammed, S., Alsafadi, K., Al-Awadhi, T., Sherief, Y., Harsanyie, E., & el Kenawy, A. M. (2020). Space and time variability of meteorological drought in Syria. Acta Geophysica, 68(6), 1877–1898. https://doi.org/10.1007/s11600-020-00501-5

    Article  Google Scholar 

  • Mokhtar, M. A., Anli, M., ben Laouane, R., Boutasknit, A., Boutaj, H., Draoui, A., Zarik, L., & Fakhech, A. (2019). Food security and climate change. In IGI Global (pp. 53–73). https://doi.org/10.4018/978-1-5225-7775-1.ch004

  • Moriasi, D. N., Arnold, J. G., Liew, M. W. van, Bingner, R. L., Harmel, R. D., & Veith, T. L. (1983). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. In Transactions of the ASABE (Vol. 50, Issue 3).

  • Nash, E. I., & SutCLIFFF, J. V. (1970). River flow forecasting through conceptual model part I- A discussion of principle. Jornal of Hydrology, 10, 282–290.

    Article  Google Scholar 

  • Nguvava, M., Abiodun, B. J., & Otieno, F. (2019). Projecting drought characteristics over East African basins at specific global warming levels. Atmospheric Research, 228, 41–54. https://doi.org/10.1016/j.atmosres.2019.05.008.

  • Okafor, G. C., Larbi, I., Chukwuma, E. C., Nyamekye, C., Limantol, A. M., & Dotse, S. Q. (2021). Local climate change signals and changes in climate extremes in a typical Sahel catchment: The case of Dano catchment, Burkina Faso. Environmental Challenges. https://doi.org/10.1016/j.envc.2021.100285

    Article  Google Scholar 

  • Okal, H. A., Ngetich, F. K., & Okeyo, J. M. (2020). Spatio-temporal characterisation of droughts using selected indices in Upper Tana River watershed, Kenya. Scientific African. https://doi.org/10.1016/j.sciaf.2020.e00275

    Article  Google Scholar 

  • Ongoma, V., Chena, H., & Gaoa, C. (2018). Projected changes in mean rainfall and temperature over east Africa based on CMIP5 models. International Journal of Climatology, 38(3), 1375–1392. https://doi.org/10.1002/joc.5252

    Article  Google Scholar 

  • Park, S., Im, J., Park, S., & Rhee, J. (2017). Drought monitoring using high resolution soil moisture through multi-sensor satellite data fusion over the Korean peninsula. Agricultural and Forest Meteorology, 237–238, 257–269. https://doi.org/10.1016/j.agrformet.2017.02.022

    Article  Google Scholar 

  • Patakamuri, S. K. (2021). Package “modifiedmk” Title Modified Versions of Mann Kendall and Spearman’s Rho Trend Tests. https://doi.org/10.1017/CBO9781107415324.004

  • Patakamuri, S. K., Muthiah, K., & Sridhar, V. (2020). Long-Term homogeneity, trend, and change-point analysis of rainfall in the arid district of ananthapuramu, Andhra Pradesh State, India. Water. https://doi.org/10.3390/w12010211

    Article  Google Scholar 

  • Peña-Guerrero, M. D., Nauditt, A., Muñoz-Robles, C., Ribbe, L., & Meza, F. (2020). Drought impacts on water quality and potential implications for agricultural production in the Maipo River Basin, Central Chile. Hydrological Sciences Journal, 65(6), 1005–1021. https://doi.org/10.1080/02626667.2020.1711911

    Article  Google Scholar 

  • Polong, F., Chen, H., Sun, S., & Ongoma, V. (2019). Temporal and spatial evolution of the standard precipitation evapotranspiration index (SPEI) in the Tana River Basin, Kenya. Theoretical and Applied Climatology, 138(1–2), 777–792. https://doi.org/10.1007/s00704-019-02858-0

    Article  Google Scholar 

  • Report, W. M. O. (2006). Drought monitoring and early warning: concepts, progress and future challenges. World Meteorological Organization.

  • Rojas, O. (2020). Agricultural extreme drought assessment at global level using the FAO-agricultural stress index system (ASIS). Weather and Climate Extremes. https://doi.org/10.1016/j.wace.2018.09.001

    Article  Google Scholar 

  • Senamaw, A., Addisu, S., & Suryabhagavan, K. V. (2021). Mapping the spatial and temporal variation of agricultural and meteorological drought using geospatial techniques Ethiopia. Environmental Systems Research. https://doi.org/10.1186/s40068-020-00204-2

    Article  Google Scholar 

  • Sheffield, J., Wood, E. F., Chaney, N., Guan, K., Sadri, S., Yuan, X., Olang, L., Amani, A., Ali, A., Demuth, S., & Ogallo, L. (2014). A drought monitoring and forecasting system for sub-sahara african water resources and food security. Bulletin of the American Meteorological Society, 95(6), 861–882. https://doi.org/10.1175/BAMS-D-12-00124.1

    Article  Google Scholar 

  • Shekhar, A., & Shapiro, C. A. (2019). What do meteorological indices tell us about a long-term tillage study? Soil & Tillage Research, 193, 161–170. https://doi.org/10.1016/j.still.2019.06.004.

  • Shepherd, A., Mitchell, T., Lewis, K., Lenhardt, A., Jones, L., Scott, L., & Muir-Wood, R. (2013). The geography of poverty, disasters and climate extremes in 2030. ODI London.

  • Shi, B., & Hussain, S. S. (2020). Toward elucidating the functions of miRNAs in drought stress tolerance. In Plant Small RNA (pp. 231–246). Elsevier. https://doi.org/10.1016/b978-0-12-817112-7.00012-2

  • Shiferaw, B., Tesfaye, K., Kassie, M., Abate, T., Prasanna, B. M., & Menkir, A. (2014). Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: Technological, institutional and policy options. Weather and Climate Extremes, 3, 67–79. https://doi.org/10.1016/j.wace.2014.04.004

    Article  Google Scholar 

  • Shongwe, M. E., van Oldenborgh, G. J., van den Hurk, B., & van Aalst, M. (2011). Projected changes in mean and extreme precipitation in Africa under global warming. Part II: East Africa. Journal of Climate, 24(14), 3718–3733.

    Article  Google Scholar 

  • Slette, I. J, Post, A. K., Awad, M, et al. (2019). How ecologists define drought, and why we should do better. Global Change Biology, 25, 3193–3200. https://doi.org/10.1111/gcb.14747.

  • Spinoni, J., Barbosa, P., Bucchignani, E., Cassano, J., Cavazos, T., Christensen, J. H., Christensen, O. B., Coppola, E., Evans, J., Geyer, B., Giorgi, F., Hadjinicolaou, P., Jacob, D., Katzfey, J., Koenigk, T., Laprise, R., Lennard, C. J., Kurnaz, M. L., Delei, L. I., & Dosio, A. (2020). Future global meteorological drought hot spots: A study based on CORDEX data. Journal of Climate, 33(9), 3635–3661. https://doi.org/10.1175/JCLI-D-19-0084.1

    Article  Google Scholar 

  • Srinivasarao, C., Rao, K. V., Gopinath, K. A., Prasad, Y. G., Arunachalam, A., Ramana, D. B. V., Chary, G. R., Gangaiah, B., Venkateswarlu, B., & Mohapatra, T. (2020). Agriculture contingency plans for managing weather aberrations and extreme climatic events: Development, implementation and impacts in India. In Advances in Agronomy (vol. 159, pp. 35–91). Academic Press Inc. https://doi.org/10.1016/bs.agron.2019.08.002

  • Tadesse, T., Haile, M., Senay, G., Wardlow, B. D., & Knutson, C. L. (2008). The need for integration of drought monitoring tools for proactive food security management in sub-Saharan Africa. Natural Resources Forum, 32, 265–279.

    Article  Google Scholar 

  • Tate, E. L., & Gustard, A. (2000). Drought definition: a hydrological perspective. In Drought and drought mitigation in Europe (pp. 23–48). Springer: Dordrecht.

  • Temam, D., Uddameri, V., Mohammadi, G., Hernandez, E. A., & Ekwaro-Osire, S. (2019). Long-term drought trends in Ethiopia with implications for dryland agriculture. Water. https://doi.org/10.3390/w11122571

    Article  Google Scholar 

  • Trenberth, K. E., Dai, A., van der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., & Sheffield, J. (2014). Global warming and changes in drought. In Nature Climate Change (vol. 4, Issue 1, pp. 17–22). https://doi.org/10.1038/nclimate2067

  • Tsakiris, G., & Vangelis, H. (2005). Establishing a drought index incorporating evapotranspiration. European Water, 9(10), 4–11.

    Google Scholar 

  • Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1

    Article  Google Scholar 

  • Vicente-Serrano, S. M., Beguería, S., Lorenzo-Lacruz, J., Camarero, J. J., López-Moreno, J. I., Azorin-Molina, C., Revuelto, J., Morán-Tejeda, E., & Sanchez-Lorenzo, A. (2012). Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interactions, 16(10), 1–27.

    Article  Google Scholar 

  • Wang, X., Hou, X., Li, Z., & Wang, Y. (2014). Spatial and temporal characteristics of meteorological drought in Shandong Province, China, from 1961 to 2008. Advances in Meteorology. https://doi.org/10.1155/2014/873593

    Article  Google Scholar 

  • Wilby, R. L., Dawson, C. W., & Barrow, E. M. (2002). sdsm-a decision support tool for the assessment of regional climate change impacts. In Environmental Modelling & Software (vol. 17). www.elsevier.com/locate/envsoft

  • Wilby, R. L., & Dawson, C. W. (2007). SDSM 4.2-A decision support tool for the assessment of regional climate change impacts User Manual. In UKSDSM. http://www.cics.uvic.ca/scenarios/index.cgi?Scenarios

  • Wilby, R. L., & Dawson, C. W. (2015). Statistical DownScaling Model-Decision Centric (SDSM-DC).

  • Wilhite, D. A. (2000). Chapter 1 Drought as a Natural Hazard: Concepts and Definitions CORE Metadata, citation and similar papers at core.ac.uk Provided by DigitalCommons@University of Nebraska. Drought: A Global Assessment, 1, 3–18. http://digitalcommons.unl.edu/droughtfacpub/69

  • Wilhite, D. A. (2003). Drought. In J. R. Holton (Ed.), Encyclopedia of Atmospheric Sciences (pp. 650–658). Academic Press. https://doi.org/10.1016/B0-12-227090-8/00037-3

  • Wilhite, D. A., & Glantz, M. H. (1985). Understanding: The Drought Phenomenon: The Role of Definitions. Water International, 10(3), 111–120. https://doi.org/10.1080/02508068508686328

    Article  Google Scholar 

  • Williams, A. P., & Funk, C. (2011). A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Climate Dynamics, 37(11–12), 2417–2435. https://doi.org/10.1007/s00382-010-0984-y

    Article  Google Scholar 

  • Woldegebrael, S. M., Kidanewold, B. B., Zaitchik, B., & Melesse, A. M. (2020). Rainfall and flood event interrelationship - a case study of awash and Omo-Gibe Basins, Ethiopia. International Journal of Scientific & Engineering Research, 11(1), 332–343.

    Google Scholar 

  • Workie, T. G., & Debella, H. J. (2018). Climate change and its effects on vegetation phenology across ecoregions of Ethiopia. Global Ecology and Conservation. https://doi.org/10.1016/j.gecco.2017.e00366

    Article  Google Scholar 

  • Yacoub, E., & Tayfur, G. (2020). Spatial and temporal of variation of meteorological drought and precipitation trend analysis over whole Mauritania. Journal of African Earth Sciences. https://doi.org/10.1016/j.jafrearsci.2020.103761

    Article  Google Scholar 

  • Yang, C., Tuo, Y., Ma, J., & Zhang, D. (2019). Spatial and temporal evolution characteristics of drought in Yunnan Province from 1969 to 2018 based on SPI/SPEI. Water, Air, and Soil Pollution. https://doi.org/10.1007/s11270-019-4287-6

    Article  Google Scholar 

  • Yao, N., Li, L., Feng, P., Feng, H., Li Liu, D., Liu, Y., Jiang, K., Hu, X., & Li, Y. (2020). Projections of drought characteristics in China based on a standardized precipitation and evapotranspiration index and multiple GCMs. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.135245

    Article  Google Scholar 

  • Zambrano-Bigiarini, M. (2020). Goodness-of-fit Measures to Compare Observed and Simulated Values with hydroGOF.

  • Zambreski, Z. T., Professor, M., & Lin, X. (2016). A statistical assessment of drought variability and climate prediction for Kansas. Cornell University.

  • Zehtabian, Gh. R., Salajegheh, A., Malekian, A., Boroomand, N., & Azareh, A. (2016). Evaluation and comparison of performance of SDSM and CLIMGEN models in simulation of climatic variables in Qazvin plain. Desert, 21(2), 147–156.

    Google Scholar 

Download references

Acknowledgements

The first author is grateful to Haramaya University for financial support. The authors are also grateful to the National Meteorology Agency of Ethiopia for providing the required meteorological data used in this paper. Finally, the authors appreciate Dr. Fikru Abiko, Addis Ababa University, for supporting the data analysis tools.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Statement of Contribution of CRediT Author H.B. Gebremichael: Original Study and Design Methodology, Data Retrieval, Software, Data Analysis and Interpretation, Writing-original draft, Writing-review and critical revisions. G.A. Raba: Data interpretation, Supervision, Writing-original draft, Writing-review and critical revisions. K.T. Beketie, G.L. Feyisa; Supervision, Writing-review and critical revisions. In general, all authors provide critical feedback and support until the research analysis is complete.

Corresponding author

Correspondence to Haftu Brhane Gebremichael.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gebremichael, H.B., Raba, G.A., Beketie, K.T. et al. Temporal and spatial characteristics of drought, future changes and possible drivers over Upper Awash Basin, Ethiopia, using SPI and SPEI. Environ Dev Sustain 26, 947–985 (2024). https://doi.org/10.1007/s10668-022-02743-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-022-02743-3

Keywords

Navigation