Skip to main content
Log in

MSPB: intelligent SAR despeckling using wavelet thresholding and bilateral filter for big visual radar data restoration and provisioning quality of experience in real-time remote sensing

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The main reason behind degradation in Synthetic Aperture Radar (SAR) images is speckle noise which is a critical barrier of enhancing Quality of Experience (QoE) in remote sensing of environment. Speckle noise is multiplicative and behaves as a kind of granular pattern which is more an artifact such that a scattering phenomenon inherently exists in the SAR images. The SAR image despeckling is a technique to suppress the noise and preserve the edges (high-frequency information). This article presents a new Method noise wavelet thresholding-based SAR image despeckling using Pixel neighborhood and Bilateral filter (MSPB) for noise suppression and artifact reduction. In the proposed method, MSPB, wavelet-based thresholding is performed using an intelligent Bayesian thresholding rule followed by the method noise thresholding. The experimental outcomes of the MSPB are visually analyzed over the speckled SAR images. The despeckling results are compared to some conventional and some of the latest despeckling methods in the research topic. The despeckling process is also analyzed by image quality assessment (IQA) metrics including no-reference (e.g., ENL) and similarity-based objective (e.g., SNR) and subjective (e.g., SSIM) metrics to measure the quality of performance. The simulation results on some SAR image big datasets show that MSPB is efficient for offline and real-time applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Availability of data and materials

The conclusion and comparison data of this article are included within the article. For inquiries regarding raw data and codes, please contact the first author.

Abbreviations

DS:

Directional Smoothing

ENL:

Equivalent Number of Look

DWT:

Discrete Wavelet Transform

SAR:

Synthetic Aperture Radar

MSPB:

Method noise wavelet thresholding-based SAR image despeckling using Pixel neighborhood and Bilateral filter

NV:

Noise Variance

IQA:

Image Quality Assessment

PSNR:

Peak Signal-to-Noise Ratio

SSIM:

Structural Similarity

References

  • Abramovich, F., Sapatinas, T., & Silverman, B. W. (1998). Wavelet thresholding via a Bayesian approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 60(4), 725–749.

  • Acharya, T., & Ray, A. K. (2005). Image processing principles and applications (2005th ed.). Wiley.

    Book  Google Scholar 

  • Ali, S. M., Javed, M. Y., & Khattak, N. S. (2007). Wavelet-based despeckling of Synthetic Aperture Radar images using adaptive and mean filters. World Academy of Science, Engineering and Technology International Journal of Computer, Electrical, Automation, Control and Information Engineering, 1(7), 1890–1894.

    Google Scholar 

  • Argenti, F., Lapini, A., & Alparone, L. (2013). A tutorial on speckle reduction in Synthetic Aperture Radar images. IEEE Geoscience and Remote Sensing Magazine, 1(3), 6–35.

    Article  Google Scholar 

  • Arias-Castro, E., & Donoho, D. L. (2009). Does median filtering truly preserve edges better than linear filtering? Annals of Statistics, 37(3), 1172–1206.

    Article  Google Scholar 

  • Atto, A. M., Trouvé, E., Nicolas, J. M., & Lê, T. T. (2016). Wavelet operators and multiplicative observation models—Application to SAR image time-series analysis. IEEE Transactions on Geoscience and Remote Sensing, 54(11), 6606–6624.

    Article  Google Scholar 

  • Brown, R. G., & Hwang, P. Y. C. (1996). Introduction to random signals and applied Kalman filtering (3rd ed.). Wiley. ISBN 0-471-12839-2.

    Google Scholar 

  • Chapter: 3. Image denoising using wavelet and bilateral filters based hybrid denoising models. https://shodhganga.inflibnet.ac.in/bitstream/10603/94090/13/13_chapter%203.pdf

  • Chowdhary, C. L., Patel, P. V., Kathrotia, K. J., Attique, M., Perumal, K., & Ijaz, M. F. (2020). Analytical study of hybrid techniques for image encryption and decryption. Sensors, 20(18), 5162.

    Article  Google Scholar 

  • Cozzolino, D., Verdoliva, L., Scarpa, G., & Poggi, G. (2020). Nonlocal CNN SAR image despeckling. Remote Sensing, 12(6), 1006.

    Article  Google Scholar 

  • Dai, M., Peng, C., Chan, A. K., & Loguinov, D. (2004). Bayesian wavelet shrinkage with edge detection for SAR image despeckling. IEEE Transactions on Geoscience and Remote Sensing, 42(8), 1642–1648.

    Article  Google Scholar 

  • Dalsasso, E., Meraoumia, I., Denis, L., & Tupin, F. (2021). Exploiting multi-temporal information for improved speckle reduction of Sentinel-1 SAR images by deep learning. arXiv preprint, arXiv:2102.00682.

  • Donoho, D. L. (1995). De-noising by soft-thresholding. IEEE Transactions on Information Theory, 41(3), 613–627.

    Article  Google Scholar 

  • Frost, V. S., Stiles, J. A., Shanmugan, K. S., & Holtzman, J. C. (1982). A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-4, 157–166.

    Article  Google Scholar 

  • Gagnon, L., & Jouan, A. (1997). Speckle filtering of SAR images: A comparative study between complex-wavelet-based and standard filters. In Proceedings on SPIE, wavelet applications in signal and image processing V (Vol. 3169, pp. 80–91).

  • Gasnier, N., Dalsasso, E., Denis, L., & Tupin, F. (2021). Despeckling Sentinel-1 GRD images by deep learning and application to narrow river segmentation. arXiv preprint, arXiv:2102.00692

  • Gragnaniello, D., Poggi, G., Scarpa, G., & Verdoliva, L. (2016). SAR image despeckling by soft classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(6), 2118–2130.

    Article  Google Scholar 

  • Guo, H., Odegard, J. E., Lang, M., Gopinath, R. A., Selesnick, I. W., & Burrus, C. S. (1994). Wavelet-based speckle reduction with application to SAR based ATD/R. In Proceedings on IEEE international conference on image processing (ICIP) (Vol. 1, pp. 75–79).

  • Hervet, E., Fjørtoft, R., Marthon, P., & Lopès, A. (1998). Comparison of wavelet-based and statistical speckle filters. In Proceedings on SPIE SAR image analysis, modelling, and techniques III, F. Posa, Ed. (Vol. 3497, pp. 43–54).

  • ISO 12232: 1997 Photography—Electronic Still Picture Cameras—Determining ISO Speed here.

  • Jain, A. K. (1989). Fundamentals of digital image processing (1st ed.). Prentice Hall Inc.

    Google Scholar 

  • Khan, A. W., Khan, M. U., Khan, J. A., Ahmad, A., Khan, K., Zamir, M., Kim, W., & Ijaz, M. F. (2021). Analyzing and evaluating critical challenges and practices for software vendor organizations to secure big data on cloud computing: An AHP-based systematic approach. IEEE Access, 9, 107309–107332.

    Article  Google Scholar 

  • Kishor, K., & Singh, P. (2018). Performance evaluation of nonlinear filters for impulse noise removal. International Journal of Advanced Studies in Computer Science and Engineering, IJASCSE, 7(1), 40–46.

    Google Scholar 

  • Kuan, D. A., Sawchuk, A. L., Strand, T. I., & Chavel, P. (1987). Adaptive restoration of images with speckle. IEEE Transactions on Audio, Speech, and Language Processing, 35(3), 373–383.

    Google Scholar 

  • Kumar, M., & Diwakar, M. (2016). A new locally adaptive patch variation based CT image denoising. International Journal of Image, Graphics and Signal Processing (IJIGSP), 8(1), 43–50. https://doi.org/10.5815/ijigsp.2016.01.05

    Article  Google Scholar 

  • Kuwahara, M., Hachimura, K., Eiho, S., & Kinoshita, M. (1976). Processing of RI-angiocardiographic images. In K. Preston & M. Onoe (Eds.), Digital processing of biomedical images (pp. 187–202). Plenum.

    Chapter  Google Scholar 

  • Kyprianidis, J. E., Kang, H., & Döllner, J. (2009). Image and video abstraction by anisotropic Kuwahara filtering. Computer Graphics Forum, 28, 1955–1963.

    Article  Google Scholar 

  • Lee, J. S. (1980). Digital image enhancement and noise filtering by use of local statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-2, 165–168.

    Article  Google Scholar 

  • Lee, J.-S. (1981). Refined filtering of image noise using local statistics. Computer Graphics and Image Processing, 15(2), 380–389.

    Article  Google Scholar 

  • Li, G.-T., Wang, C.-L., Huang, P.-P., & Yu, W.-D. (2013). SAR image despeckling using a space-domain filter with alterable window. IEEE Geoscience and Remote Sensing Letters, 10(2), 263–267.

    Article  Google Scholar 

  • Li, L., & Si, Y. (2019). Enhancement of hyperspectral remote sensing images based on improved fuzzy contrast in nonsubsampled shearlet transform domain. Multimedia Tools and Applications, 78(13), 18077–18094.

    Article  Google Scholar 

  • Liu, G., Kang, H., Wang, Q., Tian, Y., & Wan, B. (2021). Contourlet-CNN for SAR image despeckling. Remote Sensing, 13(4), 764.

    Article  Google Scholar 

  • Liu, S., Liu, T., Gao, L., Li, H., Hu, Q., Zhao, J., & Wang, C. (2019). Convolutional neural network and guided filtering for SAR image denoising. Remote Sensing, 11(6), 702.

    Article  Google Scholar 

  • Loizou, C. P., Theofanous, C., Pantziaris, M., & Kasparis, T. (2014). Despeckle filtering software toolbox for ultrasound imaging of the common carotid artery. Computer Methods and Programs in Bio Medicine, 114, 109–124.

    Article  Google Scholar 

  • Lu, L., Zhang, G., Nie, Y., Liu, J., Zhang, G., & Wu, Y. (2021, February). Application of improved CNN in SAR image noise reduction. In Journal of Physics: Conference Series (Vol. 1792, No. 1, p. 012053). IOP Publishing.

  • Ma, X., Liu, S., Hu, S., Geng, P., Liu, M., & Zhao, J. (2018). SAR image edge detection via sparse representation. Soft Computing, 22(8), 2507–2515.

    Article  Google Scholar 

  • Mastriani, M., & Giraldez, A. E. (2004). Enhanced directional smoothing algorithm for edge-preserving smoothing of synthetic-aperture radar images. Measurement Science Review, 4, 1–11. Section 3.

    Google Scholar 

  • Microwave Remote Sensing, Synthetic Aperture Radar (SAR). https://crisp.nus.edu.sg/~research/tutorial/mw.htm

  • Olfa, M., & Nawres, K. (2014). Ultrasound image denoising using a combination of bilateral filtering and stationary wavelet transform. In IEEE IPAS’14: International image processing applications and systems conference. 978-1-4799-7069-8/14/$31.00 ©2014 IEEE.

  • Parrilli, S., Poderico, M., Angelino, C. V., & Verdoliva, L. (2012). A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage. IEEE Transactions on Geoscience and Remote Sensing, 50(2), 606–616.

    Article  Google Scholar 

  • SAR Image dataset. http://eo.belspo.be/directory/SensorDetail.aspx?senID=152

  • SAR Image dataset. http://www.sandia.gov/RADAR/imagery/

  • SAR Image dataset. http://decsai.ugr.es/cvg/CG/base.htm

  • SAR Image dataset. https://photojournal.jpl.nasa.gov/catalog/PIA01763

  • Shreyamsha Kumar, B. K. (2013). Image denoising based on Gaussian/bilateral filter and its method noise thresholding. Signal, Image and Video Processing, 7, 1159. https://doi.org/10.1007/s11760-012-0372-7

    Article  Google Scholar 

  • Simard, M., DeGrandi, G., Thomson, K. P. B., & Bénié, G. B. (1998). Analysis of speckle noise contribution on wavelet decomposition of SAR images. IEEE Transactions on Geoscience and Remote Sensing, 36(6), 1953–1962.

    Article  Google Scholar 

  • Singh, P., & Shree, R. (2016b). Analysis and effects of speckle noise in SAR images. In 2nd international conference on advances in computing, communication, & automation (ICACCA) (Fall) (pp. 1–5). IEEE Conference Publications.

  • Singh, P., & Shree, R. (2016a). Statistical modelling of log transformed speckled image. International Journal of Computer Science and Information Security, 14(8), 426–431.

    Google Scholar 

  • Singh, P., & Shree, R. (2016c). Speckle noise: Modelling and implementation. International Journal of Control Theory and Applications, 9(17), 8717–8727.

    Google Scholar 

  • Singh, P., & Shree, R. (2017a). A new computationally improved homomorphic despeckling technique of SAR images. IJARCS, 8(3), 894–898.

    Google Scholar 

  • Singh, P., & Shree, R. (2017b). A new homomorphic and method noise thresholding based despeckling of SAR image using anisotropic diffusion. Journal of King Saud University – Computer and Information Sciences, 32(1), 137–148. https://doi.org/10.1016/j.jksuci.2017.06.006

    Article  Google Scholar 

  • Singh, P., & Shree, R. (2017c). Statistical quality analysis of wavelet based SAR images in despeckling process. Asian Journal of Electrical Sciences (AJES), 6(2), 1–18.

    Google Scholar 

  • Singh, P., & Shree, R. (2017d). Quantitative dual nature analysis of mean square error in SAR image despeckling. International Journal on Computer Science and Engineering (IJCSE), 9(11), 619–622.

    Google Scholar 

  • Singh, P., & Shree, R. (2018). A new SAR image despeckling using directional smoothing filter and method noise thresholding. Engineering Science and Technology, an International Journal, 21, 589–610.

    Article  Google Scholar 

  • Singh, P., Shree, R., & Diwakar, M. (2021). A new SAR image despeckling using correlation based fusion and method noise thresholding. Journal of King Saud University – Computer and Information Sciences, 33(3), 313–328.

    Article  Google Scholar 

  • Sveinsson, J. R., & Benediktsson, J. A. (2003). Almost translation invariant wavelet transformations for speckle reduction of SAR images. IEEE Transactions on Geoscience and Remote Sensing, 41(510), 2404–2408.

    Article  Google Scholar 

  • Synthetic Aperture Radar. http://wtlab.iis.u-tokyo.ac.jp/~wataru/lecture/rsgis/rsnote/cp4/cp4-3.htm

  • Tamang, J., Nkapkop, J. D. D., Ijaz, M. F., Prasad, P. K., Tsafack, N., Saha, A., Kengne, J., & Son, Y. (2021). Dynamical properties of ion-acoustic waves in space plasma and its application to image encryption. IEEE Access, 9, 18762–18782.

    Article  Google Scholar 

  • Tomasi, C., & Manduchi, R. (1998). Bilateral filtering for gray and color images. In Proceedings of the 6th international conference on computer vision, January, 4–7 (pp. 839–846). Bombay: IEEE Xplore Press. https://doi.org/10.1109/ICCV.1998.710815

  • Zhao, Y., Liu, J. G., Zhang, B., Hong, W., & Wu, Y. R. (2015). Adaptive total variation regularization based SAR image despeckling and despeckling evaluation index. IEEE Transactions on Geoscience and Remote Sensing, 53(5), 2765–2774.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to sincerely thank the editors and reviewers for their time elapsed in handling and/or peer review.

Funding

There is no funding support to be reported.

Author information

Authors and Affiliations

Authors

Contributions

PS and AS have simulated the proposed technique, PS and MD have written the first draft, MRK and MD have coordinated scientific issues, and MRK has edited and finalized the manuscript for submission.

Corresponding author

Correspondence to Mohammad R. Khosravi.

Ethics declarations

Competing interests

There is no conflict of interest (competing and financial interests).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Shankar, A., Diwakar, M. et al. MSPB: intelligent SAR despeckling using wavelet thresholding and bilateral filter for big visual radar data restoration and provisioning quality of experience in real-time remote sensing. Environ Dev Sustain (2022). https://doi.org/10.1007/s10668-022-02395-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-022-02395-3

Keywords

Navigation