Skip to main content

Advertisement

Log in

Recent approaches on the optimization of biomass gasification process parameters for product H2 and syngas ratio: a review

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Biomass gasification technology has an ancient and well-established background. The technology has widely been used to produce H2 and syngas which is subsequently upgraded to obtain valuable biofuels, Fischer–Tropsch chemicals and used in combined heat and power (CHP) plants. Abatement of tar-related complexes with an improved hydrogen content and syngas ratio (H2/CO) via biomass gasification is a critical challenge. In this review, an attempt has been made to evaluate the critical parameters affecting biomass gasification process. It is revealed that each parameter (i.e., biomass feedstock particle size, moisture content, gasifying agent, residence time, equivalence ratio, steam to biomass ratio, and gasification temperature) has significant impact of H2 and syngas production. Fluidized bed gasifiers have been quite efficient for small to medium scale applications to produce optimal syngas ratios. Use of catalyst greatly influenced the H2 and syngas yields. Impregnated catalysts were found to have more pronounced effect on the water–gas shift reaction resulting in improved gas yields. Although, the parametric optimization could be achieved; notwithstanding, economic feasibility and industrial viability are to be considered too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdoulmoumine, N., Kulkarni, A., & Adhikari, S. (2016). Effects of temperature and equivalence ratio on mass balance and energy analysis in loblolly pine oxygen gasification. Energy Science and Engineering, 4, 256–268.

    Article  CAS  Google Scholar 

  • Adeniyi, A. G., Ighalo, J. O., & Onifade, D. V. (2019). Production of biochar from elephant grass (Pernisetum purpureum) using an updraft biomass gasifier with retort heating. Biofuels. https://doi.org/10.1080/17597269.2019.1613751

    Article  Google Scholar 

  • Aguilar, G., D Muley, P., Henkel, C. & Boldor, D. (2015). Effects of biomass particle size on yield and composition of pyrolysis bio-oil derived from Chinese tallow tree (Triadica Sebifera L.) and energy cane (Saccharum complex) in an inductively heated reactor. AIMS Energy, 3.

  • Ajala, E. O., Ighalo, J. O., Ajala, M. A., Adeniyi, A. G., & Ayanshola, A. M. (2021). Sugarcane bagasse: a biomass sufficiently applied for improving global energy, environment and economic sustainability. Bioresources and Bioprocessing. https://doi.org/10.1186/s40643-021-00440-z

    Article  Google Scholar 

  • Akia, M., Yazdani, F., Motaee, E., Han, D., & Arandiyan, H. (2014). A review on conversion of biomass to biofuel by nanocatalysts. Biofuel Research Journal, 1, 16–25.

    Article  CAS  Google Scholar 

  • Alauddin, Z. A. B. Z., Lahijani, P., Mohammadi, M., & Mohamed, A. R. (2010). Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review. Renewable and Sustainable Energy Reviews, 14(9), 2852–2862.

    Article  CAS  Google Scholar 

  • Alonso, D. M., Bond, J. Q., & Dumesic, J. A. (2010). Catalytic conversion of biomass to biofuels. Green Chemistry, 12, 1493–1513.

    Article  CAS  Google Scholar 

  • Antal, M. J., Jr. (1979). Effects of residence time, temperature and pressure on the steam gasification of biomass. Princeton Univ., NJ (USA): Dept of Mechanical and Aerospace Engineering.

    Google Scholar 

  • Antonopoulou, G. (2020). Designing efficient processes for sustainable bioethanol and bio-hydrogen production from grass lawn waste. Molecules, 25, 2889.

    Article  CAS  Google Scholar 

  • Asadullah, M. (2014). Barriers of commercial power generation using biomass gasification gas: A review. Renewable and Sustainable Energy Reviews, 29, 201–215.

    Article  CAS  Google Scholar 

  • Asadullah, M., Ito, S.-I., Kunimori, K., Yamada, M., & Tomishige, K. (2002). Biomass gasification to hydrogen and syngas at low temperature: Novel catalytic system using fluidized-bed reactor. Journal of Catalysis, 208, 255–259.

    Article  CAS  Google Scholar 

  • Aydar, E., Gul, S., Unlu, N., Akgun, F., & Livatyali, H. (2014). Effect of the type of gasifying agent on gas composition in a bubbling fluidized bed reactor. Journal of the Energy Institute, 87, 35–42.

    Article  CAS  Google Scholar 

  • Aydin, E. S., Yucel, O., & Sadikoglu, H. (2019). Experimental study on hydrogen-rich syngas production via gasification of pine cone particles and wood pellets in a fixed bed downdraft gasifier. International Journal of Hydrogen Energy, 44, 17389–17396.

    Article  CAS  Google Scholar 

  • Ayodele, B. V., Mustapa, S. I., & Tuan Abdullah, T. A. R. B. (2019). A mini-review on hydrogen-rich syngas production by thermo-catalytic and bioconversion of biomass and its environmental implications. Frontiers in Energy Research, 7, 118.

    Article  Google Scholar 

  • Aznar, M. P., Caballero, M. A., Gil, J., Martin, J. A., & Corella, J. (1998). Commercial steam reforming catalysts to improve biomass gasification with steam—oxygen mixtures. 2. Catalytic tar removal. Industrial and Engineering Chemistry Research, 37, 2668–2680.

    Article  CAS  Google Scholar 

  • Basu, P. (2010). Biomass gasification and pyrolysis: practical design and theory. Academic press.

    Google Scholar 

  • Begum, S., Rasul, M. G., Akbar, D., & Ramzan, N. (2013). Performance analysis of an integrated fixed bed gasifier model for different biomass feedstocks. Energies, 6, 6508–6524.

    Article  CAS  Google Scholar 

  • Beohar, H., Gupta, B., Sethi, V., & Pandey, M. (2012). Parametric study of fixed bed biomass gasifier: A review. International Journal of Thermal Technologies, 2, 134–140.

    Google Scholar 

  • Berndes, G., Hoogwijk, M., & Van Den Broek, R. (2003). The contribution of biomass in the future global energy supply: A review of 17 studies. Biomass and Bioenergy, 25, 1–28.

    Article  Google Scholar 

  • Chang, A. C., Chang, H.-F., Lin, F.-J., Lin, K.-H., & Chen, C.-H. (2011). Biomass gasification for hydrogen production. International Journal of Hydrogen Energy, 36, 14252–14260.

    Article  CAS  Google Scholar 

  • Chen, S., Wang, D., Xue, Z., Sun, X., & Xiang, W. (2011). Calcium looping gasification for high-concentration hydrogen production with CO2 capture in a novel compact fluidized bed: Simulation and operation requirements. International Journal of Hydrogen Energy, 36, 4887–4899.

    Article  CAS  Google Scholar 

  • Chirisa, I., & Matamanda, A.R. (2021). Science Communication for Climate Change Disaster Risk Management and Environmental Education in Africa. In Research Anthology on Environmental and Societal Impacts of Climate Change, (IGI Global), pp. 636–652.

  • Chopra, S. & Jain, A. (2007). A review of fixed bed gasification systems for biomass. CIGR E-Journal

  • Chozhavendhan, S., Rajamehala, M., Karthigadevi, G., Praveenkumar, R., & Bharathiraja, B. (2020). A review on feedstock, pretreatment methods, influencing factors, production and purification processes of bio-hydrogen production. Case Studies in Chemical and Environmental Engineering, 2, 100038.

    Article  Google Scholar 

  • De Lasa, H., Salaices, E., Mazumder, J., & Lucky, R. (2011). Catalytic steam gasification of biomass: Catalysts, thermodynamics and kinetics. Chemical Reviews, 111, 5404–5433.

    Article  CAS  Google Scholar 

  • Dejtrakulwong, C., & Patumsawad, S. (2014). Four zones modeling of the downdraft biomass gasification process: Effects of moisture content and air to fuel ratio. Energy Procedia, 52, 142–149.

    Article  CAS  Google Scholar 

  • Demirbas, A. (2008). Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Conversion and Management, 49, 2106–2116.

    Article  CAS  Google Scholar 

  • Di Giuliano, A., Foscolo, P. U., Di Carlo, A., Steele, A., & Gallucci, K. (2020). Kinetic characterization of tar reforming on commercial Ni-catalyst pellets used for in situ syngas cleaning in biomass gasification: Experiments and simulations under process conditions. Industrial and Engineering Chemistry Research, 60, 6421–6434.

    Article  CAS  Google Scholar 

  • Drift, A. (2004). van der; Boerrigter, H.; Coda, B.; Cieplik, MK; Hemmes, K. Energy research Centre of the Netherlands (ECN), Petten, The Netherlands, report C--04–039.

  • Erakhrumen, A. A. (2012). Biomass gasification: Documented information for adoption/adaptation and further improvements toward sustainable utilisation of renewable natural resources. International Scholarly Research Notices, 2012, 1–8.

    Google Scholar 

  • Ernie, M. T., Azhar, A. A. & Normah, M. G. (2010). The moisture effect on wood combustion in an updraft gasifier.

  • Fagbemi, L., Khezami, L., & Capart, R. (2001). Pyrolysis products from different biomasses: Application to the thermal cracking of tar. Applied Energy, 69, 293–306.

    Article  CAS  Google Scholar 

  • Fagernäs, L., Brammer, J., Wilén, C., Lauer, M., & Verhoeff, F. (2010). Drying of biomass for second generation synfuel production. Biomass and Bioenergy, 34, 1267–1277.

    Article  CAS  Google Scholar 

  • Florin, N. H., & Harris, A. T. (2007). Hydrogen production from biomass coupled with carbon dioxide capture: The implications of thermodynamic equilibrium. International Journal of Hydrogen Energy, 32, 4119–4134.

    Article  CAS  Google Scholar 

  • Gao, N., Li, A., & Quan, C. (2009). A novel reforming method for hydrogen production from biomass steam gasification. Bioresource Technology, 100, 4271–4277.

    Article  CAS  Google Scholar 

  • Gao, N., Li, A., Quan, C., & Gao, F. (2008). Hydrogen-rich gas production from biomass steam gasification in an updraft fixed-bed gasifier combined with a porous ceramic reformer. International Journal of Hydrogen Energy, 33, 5430–5438.

    Article  CAS  Google Scholar 

  • Genon, G., Panepinto, D., & Viggiano, F. (2014). Energy from biomass: The potentialities, environmental aspects and technology. WIT Transactions on Ecology and the Environment, 190, 995–1006.

    Article  Google Scholar 

  • Gómez-Barea, A., Leckner, B., Perales, A. V., Nilsson, S., & Cano, D. F. (2013a). Improving the performance of fluidized bed biomass/waste gasifiers for distributed electricity: A new three-stage gasification system. Applied Thermal Engineering, 50, 1453–1462.

    Article  CAS  Google Scholar 

  • Gómez-Barea, A., Ollero, P., & Leckner, B. (2013b). Optimization of char and tar conversion in fluidized bed biomass gasifiers. Fuel, 103, 42–52.

    Article  CAS  Google Scholar 

  • Hamad, M. A., Radwan, A. M., Heggo, D. A., & Moustafa, T. (2016). Hydrogen rich gas production from catalytic gasification of biomass. Renewable Energy, 85, 1290–1300.

    Article  CAS  Google Scholar 

  • Hanchate, N., Ramani, S., Mathpati, C. S., & Dalvi, V. H. (2021). Biomass gasification using dual fluidized bed gasification systems: A review. Journal of Cleaner Production, 280, 123148.

    Article  Google Scholar 

  • Hanping, C., Bin, L., Haiping, Y., Guolai, Y., & Shihong, Z. (2008). Experimental investigation of biomass gasification in a fluidized bed reactor. Energy and Fuels, 22, 3493–3498.

    Article  CAS  Google Scholar 

  • Hansen, A. C., Kyritsis, D. C., & Lee, C. F. F. (2010). Characteristics of biofuels and renewable fuel standards. Biomass to biofuels: Strategies for global industries (pp. 1–26). Blackwell Publishing.

    Google Scholar 

  • Heidenreich, S., & Foscolo, P. U. (2015). New concepts in biomass gasification. Progress in Energy and Combustion Science, 46, 72–95.

    Article  Google Scholar 

  • Hernández, J. J., Aranda-Almansa, G., & Bula, A. (2010). Gasification of biomass wastes in an entrained flow gasifier: Effect of the particle size and the residence time. Fuel Processing Technology, 91, 681–692.

    Article  CAS  Google Scholar 

  • Higman, C., Van Der Burgt, M., & Van Der Burgt, M. (2008). Gasification. Cham: Elsevier.

    Google Scholar 

  • Hu, G., Xu, S., Li, S., Xiao, C., & Liu, S. (2006). Steam gasification of apricot stones with olivine and dolomite as downstream catalysts. Fuel Processing Technology, 87, 375–382.

    Article  CAS  Google Scholar 

  • Hwang, I. S., Sohn, J., Lee, U. D., & Hwang, J. (2021). CFD-DEM simulation of air-blown gasification of biomass in a bubbling fluidized bed gasifier: Effects of equivalence ratio and fluidization number. Energy, 219, 119533.

    Article  CAS  Google Scholar 

  • Islam, M. W. (2020). A review of dolomite catalyst for biomass gasification tar removal. Fuel, 267, 117095.

    Article  CAS  Google Scholar 

  • Jahromi, R., Rezaei, M., Samadi, S. H., & Jahromi, H. (2021). Biomass gasification in a downdraft fixed-bed gasifier: Optimization of operating conditions. Chemical Engineering Science, 231, 116249.

    Article  CAS  Google Scholar 

  • Jand, N., & Foscolo, P. U. (2005). Decomposition of wood particles in fluidized beds. Industrial and Engineering Chemistry Research, 44, 5079–5089.

    Article  CAS  Google Scholar 

  • Jangsawang, W., Laohalidanond, K., & Kerdsuwan, S. (2015). Optimum equivalence ratio of biomass gasification process based on thermodynamic equilibrium model. Energy Procedia, 79, 520–527.

    Article  CAS  Google Scholar 

  • Kartal, F., & Özveren, U. (2021). A comparative study for biomass gasification in bubbling bed gasifier using Aspen HYSYS. Bioresource Technology Reports, 13, 100615.

    Article  Google Scholar 

  • Kihedu, J. H., Yoshiie, R., & Naruse, I. (2016). Performance indicators for air and air–steam auto-thermal updraft gasification of biomass in packed bed reactor. Fuel Processing Technology, 141, 93–98.

    Article  CAS  Google Scholar 

  • Kim, Y.-M., Jae, J., Myung, S., Sung, B. H., Dong, J.-I., & Park, Y.-K. (2016). Investigation into the lignin decomposition mechanism by analysis of the pyrolysis product of Pinus radiata. Bioresource Technology, 219, 371–377.

    Article  CAS  Google Scholar 

  • Kinoshita, C., Wang, Y., & Zhou, J. (1994). Tar formation under different biomass gasification conditions. Journal of Analytical and Applied Pyrolysis, 29, 169–181.

    Article  CAS  Google Scholar 

  • Kirnbauer, F., Wilk, V., Kitzler, H., Kern, S., & Hofbauer, H. (2012). The positive effects of bed material coating on tar reduction in a dual fluidized bed gasifier. Fuel, 95, 553–562.

    Article  CAS  Google Scholar 

  • Kumar, A., Jones, D. D., & Hanna, M. A. (2009). Thermochemical biomass gasification: A review of the current status of the technology. Energies, 2, 556–581.

    Article  CAS  Google Scholar 

  • Kumar, B., Bhardwaj, N., Agrawal, K., Chaturvedi, V., & Verma, P. (2020). Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Processing Technology, 199, 106244.

    Article  CAS  Google Scholar 

  • Kuo, P.-C., Wu, W., & Chen, W.-H. (2014). Gasification performances of raw and torrefied biomass in a downdraft fixed bed gasifier using thermodynamic analysis. Fuel, 117, 1231–1241.

    Article  CAS  Google Scholar 

  • Kurkela, E., Kurkela, M., & Hiltunen, I. (2021). Pilot-scale development of pressurized fixed-bed gasification for synthesis gas production from biomass residues. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01554-2

    Article  Google Scholar 

  • Lalsare, A., Wang, Y., Li, Q., Sivri, A., Vukmanovich, R. J., Dumitrescu, C. E., & Hu, J. (2019). Hydrogen-rich syngas production through synergistic methane-activated catalytic biomass gasification. ACS Sustainable Chemistry and Engineering, 7, 16060–16071.

    Article  CAS  Google Scholar 

  • Łamacz, A., Krztoń, A., & Djéga-Mariadassou, G. (2011). Steam reforming of model gasification tars compounds on nickel based ceria-zirconia catalysts. Catalysis today, 176(1), 347–351.

  • Letcher, T. M. (2020). Introduction with a focus on atmospheric carbon dioxide and climate change. Future energy: Improved, sustainable and clean options for our planet (pp. 3–17). Elsevier.

    Chapter  Google Scholar 

  • Li, J., Yin, Y., Zhang, X., Liu, J., & Yan, R. (2009). Hydrogen-rich gas production by steam gasification of palm oil wastes over supported tri-metallic catalyst. International Journal of Hydrogen Energy, 34, 9108–9115.

    Article  CAS  Google Scholar 

  • Liu, B., & Ji, S. (2013). Comparative study of fluidized-bed and fixed-bed reactor for syngas methanation over Ni-W/TiO2-SiO2 catalyst. Journal of Energy Chemistry, 22, 740–746.

    Article  Google Scholar 

  • Lu, M., Xiong, Z., Lv, P., Yuan, Z., Guo, H., & Chen, Y. (2013). Catalytic purification of raw gas from biomass gasification on Mo–Ni–Co/Cordierite monolithic catalyst. Energy and Fuels, 27, 2099–2106.

    Article  CAS  Google Scholar 

  • Luo, S., Xiao, B., Guo, X., Hu, Z., Liu, S., & He, M. (2009). Hydrogen-rich gas from catalytic steam gasification of biomass in a fixed bed reactor: Influence of particle size on gasification performance. International Journal of Hydrogen Energy, 34, 1260–1264.

    Article  CAS  Google Scholar 

  • Lv, P., Xiong, Z., Chang, J., Wu, C., Chen, Y., & Zhu, J. (2004). An experimental study on biomass air–steam gasification in a fluidized bed. Bioresource Technology, 95, 95–101.

    Article  CAS  Google Scholar 

  • Lv, P., Yuan, Z., Ma, L., Wu, C., Chen, Y., & Zhu, J. (2007). Hydrogen-rich gas production from biomass air and oxygen/steam gasification in a downdraft gasifier. Renewable Energy, 32, 2173–2185.

    Article  Google Scholar 

  • Mahapatra, D. M., & Murthy, G. S. (2021). Long term evaluation of a pilot scale multimodal algal bioprocess for treatment of municipal wastewater. Journal of Cleaner Production, 311, 127690.

  • Maitlo, G., Mahar, R. B., Bhatti, Z. A., & Nazir, I. (2019). A comprehensive literature review of thermochemical conversion of biomass for syngas production and associated challenge. Mehran University Research Journal of Engineering and Technology, 38, 495–512.

    Article  CAS  Google Scholar 

  • Materazzi, M., Lettieri, P., Taylor, R., & Chapman, C. (2016). Performance analysis of RDF gasification in a two stage fluidized bed–plasma process. Waste Management, 47, 256–266.

    Article  CAS  Google Scholar 

  • Mazzoni, L., Almazrouei, M., Ghenai, C., & Janajreh, I. (2017). A comparison of energy recovery from MSW through plasma gasification and entrained flow gasification. Energy Procedia, 142, 3480–3485.

    Article  CAS  Google Scholar 

  • Mckendry, P. (2002). Energy production from biomass (part 1): Overview of biomass. Bioresource Technology, 83, 37–46.

    Article  CAS  Google Scholar 

  • Mitrović, D. M., Janevski, J. N., & Laković, M. S. (2012). Primary energy savings using heat storage for biomass heating systems. Thermal Science, 16, 423–431.

    Article  Google Scholar 

  • Mohammed, M. A. A., Salmiaton, A., Azlina, W. W., Amran, M. M., & Fakhru’l-Razi, A. (2011). Air gasification of empty fruit bunch for hydrogen-rich gas production in a fluidized-bed reactor. Energy Conversion and Management, 52(2), 1555–1561.

    Article  CAS  Google Scholar 

  • Mortensen, A. W., Mathiesen, B. V., Hansen, A. B., Pedersen, S. L., Grandal, R. D., & Wenzel, H. (2020). The role of electrification and hydrogen in breaking the biomass bottleneck of the renewable energy system–A study on the Danish energy system. Applied Energy, 275, 115331.

    Article  CAS  Google Scholar 

  • Narváez, I., Corella, J., & Orio, A. (1997). Fresh tar (from a biomass gasifier) elimination over a commercial steam-reforming catalyst. Kinetics and effect of different variables of operation. Industrial & Engineering Chemistry Research, 36, 317–327.

    Article  Google Scholar 

  • Narvaez, I., Orio, A., Aznar, M. P., & Corella, J. (1996). Biomass gasification with air in an atmospheric bubbling fluidized bed. Effect of six operational variables on the quality of the produced raw gas. Industrial & Engineering Chemistry Research, 35, 2110–2120.

    Article  CAS  Google Scholar 

  • Ni, M., Leung, D. Y., Leung, M. K., & Sumathy, K. (2006). An overview of hydrogen production from biomass. Fuel Processing Technology, 87, 461–472.

    Article  CAS  Google Scholar 

  • Nukusheva, A., Ilyassova, G., Rustembekova, D., Zhamiyeva, R., & Arenova, L. (2021). Global warming problem faced by the international community: International legal aspect. International Environmental Agreements: Politics, Law and Economics, 21, 219–233.

    Article  Google Scholar 

  • Nunes, L. J. R., & Matias, J. C. O. (2020). Biomass torrefaction as a key driver for the sustainable development and decarbonization of energy production. Sustainability, 12, 1–9.

    Article  Google Scholar 

  • ÓhAiseadha, C., Quinn, G., Connolly, R., Connolly, M., & Soon, W. (2020). Energy and climate policy—An evaluation of global climate change expenditure 2011–2018. Energies, 13, 4839.

    Article  CAS  Google Scholar 

  • Olivares, A., Aznar, M. P., Caballero, M. A., Gil, J., Francés, E., & Corella, J. (1997). Biomass gasification: Produced gas upgrading by in-bed use of dolomite. Industrial and Engineering Chemistry Research, 36, 5220–5226.

    Article  CAS  Google Scholar 

  • Oliver, C. D., Nassar, N. T., Lippke, B. R., & Mccarter, J. B. (2014). Carbon, fossil fuel, and biodiversity mitigation with wood and forests. Journal of Sustainable Forestry, 33, 248–275.

    Article  Google Scholar 

  • Osman, A. I., Mehta, N., Elgarahy, A. M., Al-Hinai, A., Al-Muhtaseb, A. H., & Rooney, D. W. (2021). Conversion of biomass to biofuels and life cycle assessment: A review. Environmental Chemistry Letters, 19, 4075–4118.

    Article  CAS  Google Scholar 

  • Ozaki, J.-I., Takei, M., Takakusagi, K., & Takahashi, N. (2012). Carbon deposition on a Ni/Al2O3 catalyst in low-temperature gasification using C6-hydrocarbons as surrogate biomass tar. Fuel Processing Technology, 102, 30–34.

    Article  CAS  Google Scholar 

  • Packer, M. (2009). Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy, 37, 3428–3437.

    Article  Google Scholar 

  • Palancar, M. C., Serrano, M., & Aragón, J. M. (2009). Testing the technological feasibility of FLUMOV as gasifier. Powder Technology, 194, 42–50.

    Article  CAS  Google Scholar 

  • Parthasarathy, P., & Narayanan, K. S. (2014). Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield–a review. Renewable Energy, 66, 570–579.

    Article  CAS  Google Scholar 

  • Peng, W., Wang, L., Mirzaee, M., Ahmadi, H., Esfahani, M., & Fremaux, S. (2017). Hydrogen and syngas production by catalytic biomass gasification. Energy Conversion and Management, 135, 270–273.

    Article  CAS  Google Scholar 

  • Perkins, C. M., Woodruff, B., Andrews, L., Lichty, P., Lancaster, B., Weimer, A. & Bingham, C. (2008). Synthesis gas production by rapid solar thermal gasification of corn stover. National Renewable Energy Lab.(NREL), Golden, CO (United States).

  • Perkins, G. (2020). Production of electricity and chemicals using gasification of municipal solid wastes. Elsevier.

    Book  Google Scholar 

  • Pfeifer, C., Rauch, R., Hofbauer, H., Świerczyński, D., Courson, C., & Kiennemann, A. (2004). Hydrogen-rich gas production with a Ni-catalyst in a dual fluidized bed biomass gasifier. Citeseer.

    Google Scholar 

  • Qian, K., Kumar, A., Patil, K., Bellmer, D., Wang, D., Yuan, W., & Huhnke, R. L. (2013). Effects of biomass feedstocks and gasification conditions on the physiochemical properties of char. Energies, 6, 3972–3986.

    Article  CAS  Google Scholar 

  • Qin, S., Chang, S., & Yao, Q. (2018). Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers. Applied Energy, 229, 413–432.

    Article  CAS  Google Scholar 

  • Raheem, A., Ji, G., Memon, A., Sivasangar, S., Wang, W., Zhao, M., & Taufiq-Yap, Y. H. (2018). Catalytic gasification of algal biomass for hydrogen-rich gas production: Parametric optimization via central composite design. Energy Conversion and Management, 158, 235–245.

    Article  CAS  Google Scholar 

  • Rapagnà, S., & Di Celso, G. M. (2008). Devolatilization of wood particles in a hot fluidized bed: Product yields and conversion rates. Biomass and Bioenergy, 32, 1123–1129.

    Article  CAS  Google Scholar 

  • Rapagnà, S., Jand, N., & Foscolo, P. (1998). Catalytic gasification of biomass to produce hydrogen rich gas. International Journal of Hydrogen Energy, 23, 551–557.

    Article  Google Scholar 

  • Rapagna, S., & Latif, A. (1997). Steam gasification of almond shells in a fluidised bed reactor: The influence of temperature and particle size on product yield and distribution. Biomass and Bioenergy, 12, 281–288.

    Article  CAS  Google Scholar 

  • Rapagnà, S., Provendier, H., Petit, C., Kiennemann, A., & Foscolo, P. (2002). Development of catalysts suitable for hydrogen or syn-gas production from biomass gasification. Biomass and Bioenergy, 22, 377–388.

    Article  Google Scholar 

  • Rapagnà, S., Virginie, M., Gallucci, K., Courson, C., Di Marcello, M., Kiennemann, A., & Foscolo, P. U. (2011). Fe/olivine catalyst for biomass steam gasification: Preparation, characterization and testing at real process conditions. Catalysis Today, 176, 163–168.

    Article  CAS  Google Scholar 

  • Ren, J., Liu, Y.-L., Zhao, X.-Y., & Cao, J.-P. (2020). Biomass thermochemical conversion: A review on tar elimination from biomass catalytic gasification. Journal of the Energy Institute, 93, 1083–1098.

    Article  CAS  Google Scholar 

  • Saidur, R., Abdelaziz, E., Demirbas, A., Hossain, M., & Mekhilef, S. (2011). A review on biomass as a fuel for boilers. Renewable and Sustainable Energy Reviews, 15, 2262–2289.

    Article  CAS  Google Scholar 

  • Salami, N., & Skála, Z. (2015). Use of the steam as gasifying agent in fluidized bed gasifier. Chemical and Biochemical Engineering Quarterly, 29, 13–18.

    Article  CAS  Google Scholar 

  • San Miguel, G., Domínguez, M. P., Hernández, M., & Sanz-Pérez, F. (2012). Characterization and potential applications of solid particles produced at a biomass gasification plant. Biomass and Bioenergy, 47, 134–144.

    Article  CAS  Google Scholar 

  • Sansaniwal, S., Pal, K., Rosen, M., & Tyagi, S. (2017). Recent advances in the development of biomass gasification technology: A comprehensive review. Renewable and Sustainable Energy Reviews, 72, 363–384.

    Article  CAS  Google Scholar 

  • Schuster, G., Löffler, G., Weigl, K., & Hofbauer, H. (2001). Biomass steam gasification–an extensive parametric modeling study. Bioresource Technology, 77, 71–79.

    Article  CAS  Google Scholar 

  • Sharma, S., & Sheth, P. N. (2016). Air–steam biomass gasification: Experiments, modeling and simulation. Energy Conversion and Management, 110, 307–318.

    Article  CAS  Google Scholar 

  • Shen, L., Gao, Y., & Xiao, J. (2008). Simulation of hydrogen production from biomass gasification in interconnected fluidized beds. Biomass and Bioenergy, 32, 120–127.

    Article  CAS  Google Scholar 

  • Sikarwar, V. S., Zhao, M., Clough, P., Yao, J., Zhong, X., Memon, M. Z., Shah, N., Anthony, E. J., & Fennell, P. S. (2016). An overview of advances in biomass gasification. Energy and Environmental Science, 9, 2939–2977.

    Article  CAS  Google Scholar 

  • Silva Ortiz, P., Maier, S., Dietrich, R.-U., Pinto Mariano, A., MacielFilho, R., & Posada, J. (2021). Comparative Techno-Economic and Exergetic Analysis of Circulating and Dual Bed Biomass Gasification Systems. Frontiers in Chemical Engineering, 3, 727068.

    Article  Google Scholar 

  • Simell, P. A., Hakala, N. A., Haario, H. E., & Krause, A. O. I. (1997). Catalytic decomposition of gasification gas tar with benzene as the model compound. Industrial & Engineering Chemistry Research, 36, 42–51.

    Article  CAS  Google Scholar 

  • Simell, P. A., Hirvensalo, E. K., Smolander, V. T., & Krause, A. O. I. (1999). Steam reforming of gasification gas tar over dolomite with benzene as a model compound. Industrial & Engineering Chemistry Research, 38, 1250–1257.

    Article  CAS  Google Scholar 

  • Sınağ, A. (2012). Catalysts in thermochemical biomass conversion. Springer.

    Book  Google Scholar 

  • Singh, R., Singh, S., & Balwanshi, J. (2014). Tar removal from producer gas: A review. Research Journal of Engineering Sciences, 2278, 9472.

    Google Scholar 

  • Sutton, D., Kelleher, B., & Ross, J. R. (2002). Catalytic conditioning of organic volatile products produced by peat pyrolysis. Biomass and Bioenergy, 23, 209–216.

    Article  CAS  Google Scholar 

  • Suwatthikul, A., Limprachaya, S., Kittisupakorn, P., & Mujtaba, I. M. (2017). Simulation of steam gasification in a fluidized bed reactor with energy self-sufficient condition. Energies, 10, 314.

    Article  CAS  Google Scholar 

  • Svoboda, K., Pohořelý, M., Hartman, M., & Martinec, J. (2009). Pretreatment and feeding of biomass for pressurized entrained flow gasification. Fuel Processing Technology, 90, 629–635.

    Article  CAS  Google Scholar 

  • Tanksale, A., Beltramini, J. N., & Lu, G. M. (2010). A review of catalytic hydrogen production processes from biomass. Renewable and Sustainable Energy Reviews, 14, 166–182.

    Article  CAS  Google Scholar 

  • Tavares, R., Ramos, A., & Rouboa, A. (2019). A theoretical study on municipal solid waste plasma gasification. Waste Management, 90, 37–45.

    Article  CAS  Google Scholar 

  • Thomson, R., Kwong, P., Ahmad, E., & Nigam, K. D. P. (2020). Clean syngas from small commercial biomass gasifiers; a review of gasifier development, recent advances and performance evaluation. International Journal of Hydrogen Energy, 45, 21087–21111.

    Article  CAS  Google Scholar 

  • Turn, S., Kinoshita, C., Zhang, Z., Ishimura, D., & Zhou, J. (1998). An experimental investigation of hydrogen production from biomass gasification. International journal of hydrogen energy, 23(8), 641–648.

  • Udomsirichakorn, J., Basu, P., Salam, P. A., & Acharya, B. (2013). Effect of CaO on tar reforming to hydrogen-enriched gas with in-process CO2 capture in a bubbling fluidized bed biomass steam gasifier. International Journal of Hydrogen Energy, 38, 14495–14504.

    Article  CAS  Google Scholar 

  • Udomsirichakorn, J., & Salam, P. A. (2014). Review of hydrogen-enriched gas production from steam gasification of biomass: The prospect of CaO-based chemical looping gasification. Renewable and Sustainable Energy Reviews, 30, 565–579.

    Article  CAS  Google Scholar 

  • Warnecke, R. (2000). Gasification of biomass: Comparison of fixed bed and fluidized bed gasifier. Biomass and Bioenergy, 18, 489–497.

    Article  CAS  Google Scholar 

  • Watson, J., Zhang, Y., Si, B., Chen, W.-T., & De Souza, R. (2018). Gasification of biowaste: A critical review and outlooks. Renewable and Sustainable Energy Reviews, 83, 1–17.

    Article  CAS  Google Scholar 

  • Wu, C.-Z., Yin, X.-L., Ma, L.-L., Zhou, Z.-Q., & Chen, H.-P. (2009). Operational characteristics of a 1.2-MW biomass gasification and power generation plant. Biotechnology Advances, 27, 588–592.

    Article  CAS  Google Scholar 

  • Xiao, Y., Xu, S., Song, Y., Shan, Y., Wang, C., & Wang, G. (2017). Biomass steam gasification for hydrogen-rich gas production in a decoupled dual loop gasification system. Fuel Processing Technology, 165, 54–61.

    Article  CAS  Google Scholar 

  • Xie, Y., Xiao, J., Shen, L., Wang, J., Zhu, J., & Hao, J. (2010). Effects of Ca-based catalysts on biomass gasification with steam in a circulating spout-fluid bed reactor. Energy and Fuels, 24, 3256–3261.

    Article  CAS  Google Scholar 

  • Yassin, L., Lettieri, P., Simons, S. J., & Germanà, A. (2009). Techno-economic performance of energy-from-waste fluidized bed combustion and gasification processes in the UK context. Chemical Engineering Journal, 146, 315–327.

    Article  CAS  Google Scholar 

  • Yolcular, S. (2009). Hydrogen production for energy use in European Union countries and Turkey. Energy Sources, Part A433A: Recovery, Utilization, and Environmental Effects, 31, 1329–1337.

    Article  Google Scholar 

  • Yu, J., Guo, Q., Gong, Y., Ding, L., Wang, J., & Yu, G. (2021). A review of the effects of alkali and alkaline earth metal species on biomass gasification. Fuel Processing Technology, 214, 106723.

    Article  CAS  Google Scholar 

  • Zafar, M. W., Sinha, A., Ahmed, Z., Qin, Q., & Zaidi, S. A. H. (2021). Effects of biomass energy consumption on environmental quality: The role of education and technology in Asia-Pacific Economic Cooperation countries. Renewable and Sustainable Energy Reviews, 142, 110868.

    Article  Google Scholar 

  • Zhang, B., Zhang, L., Yang, Z., & He, Z. (2017). An experiment study of biomass steam gasification over NiO/Dolomite for hydrogen-rich gas production. International Journal of Hydrogen Energy, 42, 76–85.

    Article  CAS  Google Scholar 

  • Zhang, B., Zhang, L., Yang, Z., Yan, Y., Pu, G., & Guo, M. (2015). Hydrogen-rich gas production from wet biomass steam gasification with CaO/MgO. International Journal of Hydrogen Energy, 40, 8816–8823.

    Article  CAS  Google Scholar 

  • Zhang, L., Xu, C. C., & Champagne, P. (2010). Overview of recent advances in thermo-chemical conversion of biomass. Energy Conversion and Management, 51, 969–982.

    Article  CAS  Google Scholar 

  • Zhou, J., Chen, Q., Zhao, H., Cao, X., Mei, Q., Luo, Z., & Cen, K. (2009). Biomass-oxygen gasification in a high-temperature entrained-flow gasifier. Biotechnology Advances, 27, 606–611.

    Article  CAS  Google Scholar 

  • Zhou, J., Masutani, S. M., Ishimura, D. M., Turn, S. Q., & Kinoshita, C. M. (2000). Release of fuel-bound nitrogen during biomass gasification. Industrial and Engineering Chemistry Research, 39, 626–634.

    Article  CAS  Google Scholar 

  • Zhu, J., Yan, C., Zhang, X., Yang, C., Jiang, M., & Zhang, X. (2020). A sustainable platform of lignin: From bioresources to materials and their applications in rechargeable batteries and supercapacitors. Progress in Energy and Combustion Science, 76, 100788.

  • Żogała, A., & Janoszek, T. (2015). CFD simulations of influence of steam in gasification agent on parameters of UCG process. Journal of Sustainable Mining, 14, 2–11.

    Article  Google Scholar 

Download references

Funding

The financial support by Higher Education Commission, Islamabad, Pakistan in the form HEC-NRPU and International Environmental Research Institute IERI-GIST in the form of research project is greatly acknowledged. This work was supported by the Fundamental Research Grant Scheme, Malaysia [FRGS/1/2019/STG05/UNIM/02/2] and MyPAIR-PHC-Hibiscus Grant [MyPAIR/1/2020/STG05/UNIM/1]. Authors duly acknowledge the Asia Pacific University of Technology & innovation, Malaysia for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Ibrahim, Kuan Shiong Khoo, Muhammad Mubashir or Pau Loke Show.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Muhammad Zain Siddiqui and Mahshab Sheraz contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddiqui, M.Z., Sheraz, M., Toor, U.A. et al. Recent approaches on the optimization of biomass gasification process parameters for product H2 and syngas ratio: a review. Environ Dev Sustain (2022). https://doi.org/10.1007/s10668-022-02279-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-022-02279-6

Keywords

Navigation