Skip to main content

The effects of urbanization and urban sprawl on CO2 emissions in China

Abstract

With the steady increase in urbanization that has occurred, China has begun to suffer from serious urban sprawl. Both the increase in urbanization and the subsequent urban sprawl have led to major changes in CO2 emissions. In this paper, we expand the STIRPAT model to empirically analyse the effects of China’s urbanization and urban sprawl on CO2 emissions from 1997 to 2018, with regression results showing that both urbanization and urban sprawl have increased CO2 emissions. Further analyses of the mechanisms indicate that urbanization can increase overall CO2 emissions by not only increasing industrial CO2 emissions, but also by increasing construction CO2 emissions and residential consumption CO2 emissions as well. Urban sprawl can increase overall carbon emissions by increasing CO2 emissions from transport, construction and industry. We then make specific suggestions for China’s carbon reduction and low-carbon development based on these findings.

This is a preview of subscription content, access via your institution.

References

  • Adams, S., Boateng, E., & Acheampong, A. (2020). Transport energy consumption and environmental quality: Does urbanization matter? Science of the Total Environment, 744, 140617.

    Article  CAS  Google Scholar 

  • Andong, R., & Sajor, E. (2017). Urban sprawl, public transport, and increasing CO2 emissions: The case of Metro Manila, Philippines. Environment, Development and Sustainability, 19, 99–123.

    Article  Google Scholar 

  • Anselin, L. (1995). Local indicators of spatial association: LISA. Geographical Analysis, 27(2), 93–115.

    Article  Google Scholar 

  • Bai, Y., Deng, X., Gibson, J., et al. (2019). How does urbanization affect residential CO2 emissions? An analysis on urban agglomeration of China. Journal of Cleaner Production, 209, 876–885.

    Article  Google Scholar 

  • Blundell, R., & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Economics, 87(1), 115–143.

    Article  Google Scholar 

  • Burnett, J., Bergstrom, J., & Dorfman, J. (2013). A spatial panel data approach to estimating U.S. state-level energy emissions. Energy Economics, 40, 396–404.

    Article  Google Scholar 

  • Burton, E. (2000). The compact city: Just or just compact? A Preliminary Analysis. Urban Studies, 37(11), 1969–2001.

    Article  Google Scholar 

  • Capello, R., & Camagni, R. (2000). Beyond optimal city size: An evaluation of alternative urban growth patterns. Urban Studies, 37(9), 1479–1496.

    Article  Google Scholar 

  • Cheng, Z., Li, L., & Liu, J. (2017a). Identifying the spatial effects and driving factors of urban PM2.5 pollution in China. Ecological Indicators, 82, 61–75.

    Article  CAS  Google Scholar 

  • Cheng, Z., Li, L., & Liu, J. (2017b). The emissions reduction effect and technical progress effect of environmental regulation policy tools. Journal of Cleaner Production, 149, 191–205.

    Article  Google Scholar 

  • Cheng, Z., Li, L., & Liu, J. (2018). Industrial structure, technical progress and carbon intensity in China’s provinces. Renewable and Sustainable Energy Reviews, 81, 2935–2946.

    Article  Google Scholar 

  • Cheng, Z., Li, L., & Liu, J. (2020a). The impact of foreign direct investment on urban PM2.5 pollution in China. Journal of Environmental Management, 265, 110532.

    Article  CAS  Google Scholar 

  • Cheng, Z., Liu, J., Li, L., & Gu, X. (2020b). Research on meta-frontier total-factor energy efficiency and its spatial convergence in Chinese provinces. Energy Economics, 86, 104702.

    Article  Google Scholar 

  • Chikaraishi, M., Fujiwara, A., Kaneko, S., & Poumanyvong, P. (2015). The moderating effects of urbanization on carbon dioxide emissions: A latent class modeling approach. Technological Forecasting and Social Change, 90, 302–317.

    Article  Google Scholar 

  • Di Liddo, G. (2015). Urban sprawl and regional growth: empirical evidence from Italian regions. In: Working paper SIET.

  • Dietz, T., & Rosa, E. A. (1997). Effects of population and affluence on CO2 emissions. Proceedings of the National Academy of Sciences, 94, 175–179.

    Article  CAS  Google Scholar 

  • Dong, F., Wang, Y., Su, B., et al. (2019). The process of peak CO2 emissions in developed economies: A perspective of industrialization and urbanization. Resources, Conservation & Recycling, 141, 61–75.

    Article  Google Scholar 

  • Dormann, C. (2007). Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global Ecology and Biogeography, 16, 129–138.

    Article  Google Scholar 

  • Du, W., & Xia, X. (2018). How does urbanization affect GHG emissions? A cross-country panel threshold data analysis. Applied Energy, 229, 872–883.

    Article  Google Scholar 

  • Ewing, R., & Rong, F. (2008). The impact of urban form on U.S. residential energy use. Housing Policy Debate, 19, 1–30.

    Article  Google Scholar 

  • Fallah, B., Partridge, M., & Olfert, M. (2011). Urban sprawl and productivity: Evidence from US metropolitan areas. Papers in Regional Science, 90(3), 451–472.

    Article  Google Scholar 

  • Fan, C., Tian, L., Zhou, L., et al. (2018). Examining the impacts of urban form on air pollutant emissions: Evidence from China. Journal of Environmental Management, 221, 405–414.

    Article  Google Scholar 

  • Fan, J., & Zhou, L. (2019). Three-dimensional intergovernmental competition and urban sprawl: Evidence from Chinese prefectural-level cities. Land Use Policy, 87, 104035.

    Article  Google Scholar 

  • Fang, C., Wang, S., & Li, G. (2015). Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities. Applied Energy, 158, 519–531.

    Article  CAS  Google Scholar 

  • Feng, Y., Wang, X., Du, W., et al. (2019). Spatiotemporal characteristics and driving forces of urban sprawl in China during 2003–2017. Journal of Cleaner Production, 241, 118061.

    Article  Google Scholar 

  • Fulton, W., Pendall, R., Nguyen, M., et al. (2001). Who sprawls most? How growth patterns differ across the US. Washington DC, the Brooking Institution Center.

  • Glaeser, E., & Kahn, M. (2010). The greenness of cities: Carbon dioxide emissions and urban development. Journal of Urban Economics, 67(3), 404–418.

    Article  Google Scholar 

  • Gonzalez, G. (2005). Urban sprawl, global warming and the limits of ecological modernization. Environmental Politics, 14(3), 344–362.

    Article  Google Scholar 

  • Gouldson, A., & Murphy, J. (1997). Ecological modernization: Restricting industrial economies. Political Quarterly, 68, 74–86.

    Article  Google Scholar 

  • Guo, S., Zhang, Y., Qian, X., et al. (2019). Urbanization and CO2 emissions in resource-exhausted cities: Evidence from Xuzhou city, China. Natural Hazards, 99, 807–826.

    Article  Google Scholar 

  • Han, J. (2020). Can urban sprawl be the cause of environmental deterioration? Based on the provincial panel data in China. Environmental Research, 189, 109954.

    Article  CAS  Google Scholar 

  • Hao, Y., Liao, H., & Wei, Y. (2015). Is China’s carbon reduction target allocation reasonable? An analysis based on carbon intensity convergence. Applied Energy, 142(15), 229–239.

    Article  Google Scholar 

  • Hashmi, S., Fan, H., Habib, Y., & Riaz, A. (2020). Non-linear relationship between urbanization paths and CO2 emissions: A case of South, South-East and East Asian economies. Urban Climate, 37, 100814.

    Article  Google Scholar 

  • Henderson, J., Storeygard, A., & Weil, D. (2012). Measuring economic growth from outer space. The American Economic Review, 102(2), 994–1028.

    Article  Google Scholar 

  • Holden, E., & Norland, I. (2005). Three challenges for the compact city as a sustainable urban form: Household consumption of energy and transport in eight residential areas in the greater Oslo region. Urban Studies, 42(12), 2145–2166.

    Article  Google Scholar 

  • Huang, J., Li, X., Wang, Y., & Lei, H. (2021). The effect of energy patents on China’s carbon emissions: Evidence from the STIRPAT model. Technological Forecasting and Social Change, 173, 121110.

    Article  Google Scholar 

  • Huang, Y., & Matsumoto, K. (2021). Drivers of the change in carbon dioxide emissions under the progress of urbanization in 30 provinces in China: A decomposition analysis. Journal of Cleaner Production, 322, 129000.

    Article  CAS  Google Scholar 

  • Huo, T., Li, X., Cai, W., et al. (2020). Exploring the impact of urbanization on urban building carbon emissions in China: Evidence from a provincial panel data model. Sustainable Cities and Society, 56, 102068.

    Article  Google Scholar 

  • Im, K., Pesaran, M., & Shin, Y. (2003). Testing for unit roots in heterogeneous panels. Journal of Economics, 115(1), 53–74.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). (2007). Climate change 2007: The fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press.

  • Jacobs, J., Ligthart, J., & Vrijburg, H. (2009). Dynamic panel data models featuring endogenous interaction and spatially correlated errors. In International Center for Public Policy Working Paper Series 0915, Andrew Young School of Policy Studies, Georgia State University.

  • Kahouli, B. (2018). The causality link between energy electricity consumption, CO2 emissions, R&D stocks and economic growth in Mediterranean countries (MCs). Energy, 145, 388–399.

    Article  Google Scholar 

  • Kang, Y., Zhao, T., & Yang, Y. (2016). Environmental Kuznets curve for CO2 emissions in China: A spatial panel data approach. Ecological Indicators, 63, 231–239.

    Article  CAS  Google Scholar 

  • Kao, C. (1999). Spurious regression and residual-based tests for cointegration in panel data. Journal of Economics, 90(1), 1–44.

    Article  Google Scholar 

  • Kukenova, M., & Monteiro, J. (2009.) Spatial dynamic panel model and system GMM: A Monte Carlo investigation. In IRENE Working Papers 09-01, Irene Institute of Economic Research.

  • Lee, L., & Yu, J. (2010). Estimation of spatial autoregressive panel data models with fixed effects. J Econom, 154(2), 165–185.

    Article  Google Scholar 

  • Lee, S., & Lee, B. (2014). The influence of urban form on GHG emissions in the U.S. household sector. Energy Policy, 68, 534–549.

    Article  Google Scholar 

  • Li, K., & Lin, B. (2015). Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter? Renewable and Sustainable Energy Reviews, 52, 1107–1122.

    Article  CAS  Google Scholar 

  • Li, Q., Song, J., & Wang, E. (2014). Economic growth and pollutant emissions in China: A spatial econometric analysis. Stochastic Environmental Research and Risk Assessment, 28(2), 429–442.

    Article  Google Scholar 

  • Li, T., Wang, Y., & Zhao, D. (2016). Environmental Kuznets Curve in China: New evidence from dynamic panel analysis. Energy Policy, 91, 138–147.

    Article  Google Scholar 

  • Liang, X., Gong, Q., Zheng, H., & Xu, J. (2020a). Examining the impact factors of the water environment using the extended STIRPAT model: A Case Study in Sichuan. Environmental Science and Pollution Research, 27(12), 12942–12952.

    Article  Google Scholar 

  • Liang, Z., Wu, S., Wang, Y., et al. (2020b). The relationship between urban form and heat island intensity along the urban development gradients. Science of the Total Environment, 708, 135011.

    Article  CAS  Google Scholar 

  • Liddle, B., & Lung, S. (2010). Age-structure, urbanization, and climate change in developed countries: Revisiting STIRPAT for disaggregated population and consumption-related environmental impacts. Population and Environment, 31(5), 317–343.

    Article  Google Scholar 

  • Lopez, R., & Hynes, H. (2003). Sprawl in the 1990s measurement, distribution, and trends. Urban Affairs Rev, 38(3), 325–355.

    Article  Google Scholar 

  • Lu, J., Li, B., & Li, H. (2019). The influence of land finance and public service supply on peri-urbanization: Evidence from the counties in China. Habitat International, 92, 102039.

    Article  Google Scholar 

  • Maddala, G., & Wu, S. (1999). A comparative study of unit root tests with panel data and a new simple test. Oxford Bulletin of Economics and Statistics, 61(S1), 631–652.

    Article  Google Scholar 

  • Maddison, D. (2006). Environmental Kuznets curves: A spatial econometric approach. Journal of Environmental Economics and Management, 51, 218–230.

    Article  Google Scholar 

  • Mol, A., & Spaargaren, G. (2000). Ecological modernization theory in Debate: A review. Environmental Politics, 9(1), 17–49.

    Article  Google Scholar 

  • Muhammad, S., Long, X., Salman, M., & Dauda, L. (2020). Effect of urbanization and international trade on CO2 emissions across 65 belt and road initiative countries. Energy, 196, 117102.

    Article  Google Scholar 

  • Navamuel, E., Morollon, F., & Cuartas, B. (2018). Energy consumption and urban sprawl: Evidence for the Spanish case. Journal of Cleaner Production, 172, 3479–3486.

    Article  Google Scholar 

  • Ou, J., Liu, X., Li, X., & Chen, Y. (2013). Quantifying the relationship between urban forms and carbon emissions using panel data analysis. Landscape Ecology, 28, 1889–1907.

    Article  Google Scholar 

  • Pan, H., Page, J., Cong, C., et al. (2021). How ecosystems services drive urban growth: Integrating nature-based solutions. Anthropocene, 35, 100297.

    Article  Google Scholar 

  • Pan, H., Page, J., Zhang, L., et al. (2020). Understanding interactions between urban development policies and GHG emissions: A case study in Stockholm Region. Ambio, 49, 1313–1327.

    Article  Google Scholar 

  • Pesaran, M. (2007). A simple panel unit root test in the presence of crosssection dependence. Journal of Applied Economics, 22, 265–312.

    Article  Google Scholar 

  • Poumanyvong, P., & Kaneko, S. (2010). Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis. Ecological Economics, 70(2), 434–444.

    Article  Google Scholar 

  • Qin, M., Liu, X., & Li, S. (2019). The impact of urban sprawl on regional economic growth-empirical researches based on DMSP Night-Time Light Data. China Economic Quarterly, 18(2), 527–550.

    Google Scholar 

  • Sadorsky, P. (2014). The effect of urbanization on CO2 emissions in emerging economies. Energy Economics, 41, 147–153.

    Article  Google Scholar 

  • Shahbaz, M., Loganathan, N., Muzaffar, A., Ahmed, K., & Jabran, M. (2016). How urbanization affects CO2 emissions in Malaysia? The application of STIRPAT model. Renewable and Sustainable Energy Reviews, 57, 83–93.

    Article  CAS  Google Scholar 

  • Sharma, S. (2011). Determinants of carbon dioxide emissions: Empirical evidence from 69 countries. Applied Energy, 88(1), 376–382.

    Article  CAS  Google Scholar 

  • Shi, A. (2003). The impact of population pressure on global carbon dioxide emissions, 1975–1996: Evidence from pooled cross-country data. Ecological Economics, 44(1), 29–42.

    Article  Google Scholar 

  • Song, Y. (2005). Influence of new town development on the urban heat island-the case of the Bundang area. Journal of Environmental Sciences, 17(4), 641–645.

    Google Scholar 

  • Sun, C., Yang, Y., & Zhao, L. (2015). Economic spillover effect in the Bohai Rim Region of China: Is the economic growth of coastal counties beneficial for the whole area? China Economic Review, 33(4), 123–136.

    Article  Google Scholar 

  • The US National Oceanic and Atmospheric Administration’s (NOAA) Web site: http://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html.

  • Wang, S., Fang, C., & Wang, Y. (2016a). Spatiotemporal variations of energy-related CO2 emissions in China and its influencing factors: An empirical analysis based on provincial panel data. Renewable and Sustainable Energy Reviews, 55, 505–515.

    Article  Google Scholar 

  • Wang, S., Zeng, J., Huang, Y., et al. (2018). The effects of urbanization on CO2 emissions in the Pearl River Delta: A comprehensive assessment and panel data analysis. Applied Energy, 228, 1693–1706.

    Article  Google Scholar 

  • Wang, X., Shi, R., & Zhou, Y. (2019a). Dynamics of urban sprawl and sustainable development in China. Socio-Economics Planning Sciences. https://doi.org/10.1016/j.seps.2019.100736

    Article  Google Scholar 

  • Wang, Y., Chen, L., & Kubota, J. (2016b). The relationship between urbanization, energy use and carbon emissions: Evidence from a panel of Association of Southeast Asian Nations (ASEAN) countries. Journal of Cleaner Production, 112, 1368–1374.

    Article  Google Scholar 

  • Wang, Y., Chen, W., Zhao, M., et al. (2019b). Analysis of the influencing factors on CO2 Emissions at different urbanization levels: Regional difference in China based on panel estimation. Natural Hazards, 62, 627–645.

    Article  Google Scholar 

  • Wang, Y., Li, L., Kubota, J., Han, R., Zhu, X., & Lu, G. (2016c). Does urbanization lead to more carbon emissions? Evidence form a panel of BRICS countries. Applied Energy, 168, 375–380.

    Article  Google Scholar 

  • Wang, Y., Zhang, X., Kubota, J., Zhu, X., & Lu, G. (2015). A semi-parametric panel data analysis on the urbanization- carbon emissions nexus for OECD countries. Renewable and Sustainable Energy Reviews, 48, 704–709.

    Article  Google Scholar 

  • Wen, L., & Shao, H. (2019). Analysis of influencing factors of the carbon dioxide emissions in China’s commercial department based on the STIRPAT model and ridge regression. Environmental Science and Pollution Research International, 26, 27138–27147.

    Article  CAS  Google Scholar 

  • Westerlund, J. (2007). Testing for error correction in panel data. Oxford Bulletin of Economics and Statistics, 69(6), 709–748.

    Article  Google Scholar 

  • Wilson, B., & Chakraborty, A. (2013). The environmental impacts of sprawl: Emergent themes from the past decade of planning research. Sustainability, 5(8), 3302–3327.

    Article  Google Scholar 

  • Xu, B., & Lin, B. (2015). How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models. Energy Econ, 48, 188–202.

    Article  Google Scholar 

  • Xu, Q., Dong, Y., & Yang, R. (2018). Urbanization impact on carbon emissions in the Pearl River Delta region: Kuznets curve relationship. Journal of Cleaner Production, 180, 514–523.

    Article  Google Scholar 

  • Xu, S., He, Z., Long, R., & Shen, W. (2016). Impacts of economic growth and urbanization on CO2 emissions: Regional differences in China based on panel estimation. Regional Environmental Change, 6(3), 777–787.

    Article  Google Scholar 

  • Yuan, Y., Chen, D., Wu, S., et al. (2019). Urban sprawl decreases the value of ecosystem services and intensifies the supply scarcity of ecosystem services in China. Science of the Total Environment, 697, 134170.

    Article  Google Scholar 

  • Yuan, Y., Wang, M., Zhu, Y., Huang, X., & Xiong, X. (2020). Urbanization’s effects on the urban-rural income gap in China: A meta-regression analysis. Land Use Policy, 99, 104995.

    Article  Google Scholar 

  • Zhang, C., & Chen, P. (2021). Industrialization, urbanization, and carbon emission efficiency of Yangtze River Economic Belt-empirical analysis based on stochastic frontier model. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-15309-z

    Article  Google Scholar 

  • Zhang, W., Cui, Y., Wang, J., Wang, C., & Street, D. (2020a). How does urbanization affect CO2 emissions of central heating systems in China? An assessment of natural gas transition policy based on nighttime light data. Journal of Cleaner Production, 276, 123188.

    Article  CAS  Google Scholar 

  • Zhang, X., Geng, Y., Shao, S., et al. (2020b). China’s non-fossil energy development and its 2030 CO2 reduction targets: The role of urbanization. Applied Energy, 261, 114353.

    Article  Google Scholar 

  • Zheng, X., Yu, Y., Wang, J., & Deng, H. (2014). Identifying the determinants and spatial nexus of provincial carbon intensity in China: A dynamic spatial panel approach. Regional Environmental Change, 14(4), 1651–1661.

    Article  Google Scholar 

  • Zhou, C., Wang, S., & Wang, J. (2019). Examining the influences of urbanization on carbon dioxide emissions in the Yangtze River Delta, China: Kuznets curve relationship. Science of the Total Environment, 675, 472–482.

    Article  CAS  Google Scholar 

  • Zhou, Y., Chen, M., Tang, Z., & Mei, Z. (2021). Urbanization, land use change, and carbon emissions: Quantitative assessments for city-level carbon emissions in Beijing-Tianjin-Hebei region. Sustainable Cities and Society, 66, 102701.

    Article  Google Scholar 

  • Zhu, E., Deng, J., Zhou, M., et al. (2019). Carbon emissions induced by land-use and land-cover change from 1970 to 2010 in Zhejiang, China. Science of the Total Environment, 646, 930–939.

    Article  CAS  Google Scholar 

  • Zhu, Q., & Peng, X. (2012). The impacts of population change on carbon emissions in China during 1978–2008. Environmental Impact Assessment Review, 36, 1–8.

    Article  Google Scholar 

Download references

Funding

National Natural Foundation of China (71803087).

Author information

Authors and Affiliations

Authors

Contributions

ZC contributed to conceptualization; formal analysis; methodology; writing–original draft. XH contributed to formal analysis; writing—review and editing; data curation.

Corresponding author

Correspondence to Zhonghua Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z., Hu, X. The effects of urbanization and urban sprawl on CO2 emissions in China. Environ Dev Sustain 25, 1792–1808 (2023). https://doi.org/10.1007/s10668-022-02123-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-022-02123-x

Keywords

  • Urbanization
  • Urban sprawl
  • CO2 emissions
  • Dynamic spatial panel