Abstract
A medicine can be administered in varied dosage forms which are having different environmental impacts. Two dosage forms of paracetamol (tablet and syrup) have the same function but are prepared and packaged differently, meaning that the environmental impacts arising out of their production will be of different magnitude. This study utilizes the life cycle assessment technique to find and compare the environmental impacts of two dosage forms of the paracetamol. Life cycle assessment software ‘GaBi’ v 8.0 has been utilized to carry out this study. Midpoint and endpoint impact assessment methods from ‘ReCiPe’ impact assessment method are used to carry out the life cycle impact assessment. The midpoint impact assessment results show that syrup production has 90% contribution in climate change impact category and more than 50% environment impact in fine particulate matter formation, fossil depletion, freshwater consumption, freshwater eutrophication, freshwater ecotoxicity, ionizing radiation, photochemical ozone formation, stratospheric ozone depletion, and terrestrial ecotoxicity midpoint impact categories. Tablet production has major impacts in 3 midpoint impact categories that are human toxicity, ionizing radiation, and metal depletion. Syrup production has major impacts (more than 70%) in 8 out of the 11 endpoint impact categories considered, while tablet production has a major impact in 3 impact categories that are human toxicity and ionizing radiation endpoint impact categories. Syrup production has a visibly higher impact in more number of midpoint as well as endpoint impact categories considered. The environmental hotspot is, however, dependent on the individual impact categories. The results of the study add to the existing knowledge of environmental sustainability assessment in the pharmaceutical sector and will benefit the environmental managers to better manage the environmental sustainability of pharmaceutical products.
Similar content being viewed by others
References
Alfarisi, S., & Primadasa, R. (2018). Carbon footprint and life cycle assessment of PET bottle manufacturing process. In: Proceedings of the the 1st international conference on computer science and engineering technology Universitas Muria Kudus [Internet]. Kudus, Indonesia: EAI. https://doi.org/10.4108/eai.24-10-2018.2280596.
Amelio, A., Genduso, G., Vreysen, S., Luis, P., & Van der Bruggen, B. (2014). Guidelines based on life cycle assessment for solvent selection during the process design and evaluation of treatment alternatives. Green Chemistry, 16(6), 3045–3063. https://doi.org/10.1039/C3GC42513D.
Ball, P. D., Evans, S., Levers, A., & Ellison, D. (2009). Zero carbon manufacturing facility—towards integrating material, energy, and waste process flows. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture., 223(9), 1085–1096. https://doi.org/10.1243/09544054JEM1357.
Belboom, S., Renzoni, R., Verjans, B., Léonard, A., & Germain, A. (2011). A life cycle assessment of injectable drug primary packaging: comparing the traditional process in glass vials with the closed vial technology (polymer vials). The International Journal of Life Cycle Assessment, 16(2), 159–167. https://doi.org/10.1007/s11367-011-0248-z.
Boggia, A., Paolotti, L., & Castellini, C. (2010). Environmental impact evaluation of conventional, organic and organic-plus poultry production systems using life cycle assessment. World’s Poultry Science Journal, 66(1), 95–114. https://doi.org/10.1017/S0043933910000103.
Çankaya, S. (2019). Investigating the environmental impacts of alternative fuel usage in cement production: A life cycle approach. Environment, Development and Sustainability, 22, 7495–7514.
Carole, W. A., Slater, C. S. C., Savelski, M. J., Moroz, T. M., Furiato, A., & Rowan, K. L. (2008). Use of life cycle assessment in evaluating solvent recovery alternatives in pharmaceutical manufacture. In: 8th International conference on ecobalance. Tokyo, Japan.
Cespi, D., Beach, E. S., Swarr, T. E., Passarini, F., Vassura, I., Dunn, P. J., & Anastas, P. T. (2015). Life cycle inventory improvement in the pharmaceutical sector: Assessment of the sustainability combining PMI and LCA tools. Green Chemistry, 17(6), 3390–3400. https://doi.org/10.1039/C5GC00424A.
Chiam, E., Weinberg, L., & Bellomo, R. (2015). Paracetamol: A review with specific focus on the haemodynamic effects of intravenous administration. Heart, Lung and Vessels, 7(2), 121–132.
Comanita, E. D., Ghinea, C., Rosca, M., Simion, I. M., Petraru, M., & Gavrilescu, M. (2015). Environmental impacts of polyvinyl chloride (PVC) production process. In: 2015 E-Health and Bioengineering Conference (EHB) [Internet]. Iasi, Romania: IEEE; [accessed 2019 Nov 6]; p. 1–4. https://doi.org/10.1109/EHB.2015.7391486.
Dhaliwal, H., Browne, M., Flanagan, W., Laurin, L., & Hamilton, M. (2014). A life cycle assessment of packaging options for contrast media delivery: Comparing polymer bottle versus glass bottle. The International Journal of Life Cycle Assessment, 19(12), 1965–1973. https://doi.org/10.1007/s11367-014-0795-1.
Dong, Y. H., & Ng, S. T. (2014). Comparing the midpoint and endpoint approaches based on ReCiPe—a study of commercial buildings in Hong Kong. The International Journal of Life Cycle Assessment, 19(7), 1409–1423. https://doi.org/10.1007/s11367-014-0743-0.
Durgesh, J., Modi, Y., & Ravi, B. (2011). Evaluating environmental impacts of sand cast products using life cycle assessment. Research into Design—Supporting Sustainable Product Development (pp. 551–558). Bangalore, India: Research Publishing.
Egilmez, G., Kucukvar, M., Tatari, O., & Bhutta, M. K. S. (2014). Supply chain sustainability assessment of the U.S. food manufacturing sectors: A life cycle-based frontier approach. Resources, Conservation and Recycling, 82, 8–20. https://doi.org/10.1016/j.resconrec.2013.10.008.
GaBi, S. (2020). [accessed 2020 Jul 22]. http://www.gabi-software.com/international/software/gabi-software/.
Global Acetaminophen (Paracetamol) Market set for rapid growth, to reach around USD 999.4 Million by 2020 (2016). https://www.marketresearchstore.com/news/global-acetaminophen-paracetamol-market-148.
Goulart Coelho, L. M., & Lange, L. C. (2018). Applying life cycle assessment to support environmentally sustainable waste management strategies in Brazil. Resources, Conservation and Recycling, 128, 438–450. https://doi.org/10.1016/j.resconrec.2016.09.026.
Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M. D. M., et al. (2016). ReCiPe 2016 A harmonized life cycle impact assessment method at midpoint and endpoint level Report I: Characterization. International Journal of Life Cycle Assessment, 22, 138–147.
Iolanda, M. D., Miranda, S., Riemma, S., & Iannone, R. (2016). LCA of starch aerogels for biomedical applications. Chemical Engineering Transactions, 49, 319–324. https://doi.org/10.3303/CET1649054.
Iritani, D. R., Silva, D. A. L., Saavedra, Y. M. B., Grael, P. F. F., & Ometto, A. R. (2015). Sustainable strategies analysis through Life Cycle Assessment: A case study in a furniture industry. Journal of Cleaner Production, 96, 308–318. https://doi.org/10.1016/j.jclepro.2014.05.029.
Jacquemin, L., Pontalier, P. Y., & Sablayrolles, C. (2012). Life cycle assessment (LCA) applied to the process industry: A review. The International Journal of Life Cycle Assessment, 17(8), 1028–1041. https://doi.org/10.1007/s11367-012-0432-9.
Jeswani, H. K., & Azapagic, A. (2019). Life cycle environmental impacts of inhalers. Journal of Cleaner Production, 237, 117733. https://doi.org/10.1016/j.jclepro.2019.117733.
Jiménez-González, C., Curzons, A. D., Constable, D. J., & Cunningham, V. L. (2004). Cradle-to-gate life cycle inventory and assessment of pharmaceutical compounds. The International Journal of Life Cycle Assessment, 9(2), 114–121.
Jiménez-González, C., & Overcash, M. R. (2014). The evolution of life cycle assessment in pharmaceutical and chemical applications—a perspective. Green Chemistry, 16(7), 3392–3400. https://doi.org/10.1039/C4GC00790E.
Jungmeier, G., Werner, F., Jarnehammar, A., Hohenthal, C., & Richter, K. (2002). Allocation in LCA of wood-based products experiences of cost action E9. The International Journal of Life Cycle Assessment, 7(6), 369–375. https://doi.org/10.1007/BF02978686.
Kim, S., Jiménez-González, C., & Dale, B. E. (2009). Enzymes for pharmaceutical applications—a cradle-to-gate life cycle assessment. International Journal of Life Cycle Assessment, 14(5), 392–400. https://doi.org/10.1007/s11367-009-0081-9.
Kloepffer, W. (2008). Life cycle sustainability assessment of products with: (Comments by Helias A Udo de Haes)t. International Journal of Life Cycle Assessment, 13(2), 89–95. https://doi.org/10.1065/lca2008.02.376.
Kumar, H., Azad, A., Gupta, A., Sharma, J., Bherwani, H., Labhsetwar, N. K., & Kumar, R. (2020). COVID-19 Creating another problem? Sustainable solution for PPE disposal through LCA approach. Environ Dev Sustain [Internet]. [accessed 2021 Feb 3]. https://doi.org/10.1007/s10668-020-01033-0.
Lee, C. K., Khoo, H. H., & Tan, R. B. H. (2016). Life cyle assessment based environmental performance comparison of batch and continuous processing: A case of 4-d-erythronolactone synthesis. Organic Process Research & Development, 20(11), 1937–1948. https://doi.org/10.1021/acs.oprd.6b00275.
Linton, J., Klassen, R., & Jayaraman, V. (2007). Sustainable supply chains: An introduction. Journal of Operations Management, 25(6), 1075–1082. https://doi.org/10.1016/j.jom.2007.01.012.
Liu, Y., & Srai, J. S. (2011). Sustainable supply chain configuration: proposing a hot spot analysis methodology. In: Proceedings of the international conference on materials science, metal and manufacturing. Singapore.
Mata, M. T., Martins, A. A., Neto, B., Martins, L. M., Salcedo, L. R. R., & Costa, A. V. C. (2012). LCA Tool for Sustainability Evaluations in the Pharmaceutical Industry. Chemical Engineering Transactions, 26.
Mayyas, A. T., Qattawi, A., Mayyas, A. R., & Omar, M. A. (2012). Life cycle assessment-based selection for a sustainable lightweight body-in-white design. Energy, 39(1), 412–425. https://doi.org/10.1016/j.energy.2011.12.033.
Ness, B., Urbel-Piirsalu, E., Anderberg, S., & Olsson, L. (2007). Categorising tools for sustainability assessment. Ecological Economics, 60(3), 498–508. https://doi.org/10.1016/j.ecolecon.2006.07.023.
Niero, M., Pizzol, M., Bruun, H. G., & Thomsen, M. (2014). Comparative life cycle assessment of wastewater treatment in Denmark including sensitivity and uncertainty analysis. Journal of Cleaner Production, 68, 25–35. https://doi.org/10.1016/j.jclepro.2013.12.051.
Nigri, E. M., de Barros, A. C., Rocha, S. D. F., & Romeiro Filho, E. (2014). Assessing environmental impacts using a comparative LCA of industrial and artisanal production processes: “Minas Cheese” case. Food Science and Technology (Campinas), 34(3), 522–531. https://doi.org/10.1590/1678-457x.6356.
Norgate, T., & Haque, N. (2012). Using life cycle assessment to evaluate some environmental impacts of gold production. Journal of Cleaner Production, 29–30, 53–63. https://doi.org/10.1016/j.jclepro.2012.01.042.
Nygren, J., & Riina, A. (2010). Use of life cycle assessment (LCA) in global companies [Internet]. Finland: Finnish Environment Institute. https://helda.helsinki.fi/bitstream/handle/10138/39723/SYKEre_16_2010.pdf?sequence=1.
Ofori-Boateng, C., & Lee, K. T. (2014). An oil palm-based biorefinery concept for cellulosic ethanol and phytochemicals production: Sustainability evaluation using exergetic life cycle assessment. Applied Thermal Engineering, 62(1), 90–104. https://doi.org/10.1016/j.applthermaleng.2013.09.022.
Ott, D., Kralisch, D., Denčić, I., Hessel, V., Laribi, Y., Perrichon, P. D., et al. (2014). Life cycle analysis within pharmaceutical process optimization and intensification: Case study of active pharmaceuticalIngredient production. ChemSusChem, 7(12), 3521–3533. https://doi.org/10.1002/cssc.201402313.
Paraskevas, D., Kellens, K., Dewulf, W., & Duflou, J. R. (2015). Environmental modelling of aluminium recycling: A life cycle assessment tool for sustainable metal management. Journal of Cleaner Production, 105, 357–370. https://doi.org/10.1016/j.jclepro.2014.09.102.
Parvatker, A. G., Tunceroglu, H., Sherman, J. D., Coish, P., Anastas, P., Zimmerman, J. B., & Eckelman, M. J. (2019). Cradle-to-gate greenhouse gas emissions for twenty anesthetic active pharmaceutical ingredients based on process scale-up and process design calculations. ACS Sustainable Chemistry & Engineering, 7(7), 6580–6591. https://doi.org/10.1021/acssuschemeng.8b05473.
Pérez-López, P., Jeffryes, C., Agathos, S. N., Feijoo, G., Rorrer, G., & Moreira, M. T. (2016). Environmental life cycle optimization of essential terpene oils produced by the macroalga Ochtodes secundiramea. Science of The Total Environment, 542, 292–305. https://doi.org/10.1016/j.scitotenv.2015.10.045.
Prakash, C., & Barua, M. K. (2015). Integration of AHP-TOPSIS method for prioritizing the solutions of reverse logistics adoption to overcome its barriers under fuzzy environment. Journal of Manufacturing Systems, 37, 599–615. https://doi.org/10.1016/j.jmsy.2015.03.001
Procurement of pharmaceuticals in an environmental context and its inclusion into the CSR Compass. (2013). Stockholm: The Swedish Environmental Protection Agency.
Qureshi, M. S., Rukh, G., Kirplani, P. D., Farheen, A., & Hamid, M. (2016). A comparative study of quality on conventional paracetamol tablets available in Pakistan. Research in Pharmacy and Health Sciences, 2(3), 205–210. https://doi.org/10.32463/rphs.2016.v02i03.40.
Raju, G., Sarkar, P., Singla, E., Singh, H., & Sharma, R. K. (2016). Comparison of environmental sustainability of pharmaceutical packaging. Perspectives in Science. https://doi.org/10.1016/j.pisc.2016.06.058.
Raymond, M. (2013). An investigation of the potential for and application of life cycle analysis in the pharmaceutical industry. New Jersey: Rowan University
Raymond, M. J., Slater, C. S., & Savelski, M. J. (2010). LCA approach to the analysis of solvent waste issues in the pharmaceutical industry. Green Chemistry, 12(10), 1826. https://doi.org/10.1039/c003666h.
ReCiPe | PRé Sustainability (2019). [accessed 2019 Oct 9]. https://www.pre-sustainability.com/recipe.
ReCiPe method for the impact assessment (2011). https://www.rivm.nl/en/Topics/L/Life_Cycle_Assessment_LCA/ReCiPe.
Ren, J., Manzardo, A., Mazzi, A., Zuliani, F., & Scipioni, A. (2015). Prioritization of bioethanol production pathways in China based on life cycle sustainability assessment and multicriteria decision-making. The International Journal of Life Cycle Assessment, 20(6), 842–853. https://doi.org/10.1007/s11367-015-0877-8.
Renteria Gamiz, A. G., De Soete, W., Heirman, B., Dahlin, P., De Meester, S., & Dewulf, J. (2019). Environmental sustainability assessment of the manufacturing process of a biological active pharmaceutical ingredient. Journal of Chemical Technology & Biotechnology, 94(6), 1937–1944. https://doi.org/10.1002/jctb.5975.
Reza, B., Sadiq, R., & Hewage, K. (2014). Emergy-based life cycle assessment (Em-LCA) for sustainability appraisal of infrastructure systems: A case study on paved roads. Clean Technologies and Environmental Policy, 16(2), 251–266. https://doi.org/10.1007/s10098-013-0615-5.
Rodríguez, R., Espada, J. J., Pariente, M. I., Melero, J. A., Martínez, F., & Molina, R. (2016). Comparative life cycle assessment (LCA) study of heterogeneous and homogenous Fenton processes for the treatment of pharmaceutical wastewater. Journal of Cleaner Production, 124, 21–29. https://doi.org/10.1016/j.jclepro.2016.02.064
Rybaczewska-Blażejowska, M., & Palekhov, D. (2018). Life cycle assessment (LCA) in environmental impact assessment (EIA): Principles and practical implications for industrial projects. Management, 22(1), 138–153. https://doi.org/10.2478/manment-2018-0010.
Saur, K., Gediga, J., Hesselbach, J., Schuckert, M., & Eyerer, P. (1996). Life cycle assessment as an engineering tool in the automotive industry. The International Journal of Life Cycle Assessment, 1(1), 15–21. https://doi.org/10.1007/BF02978626.
Savelski, M. J., Slater, C. S., Tozzi, P. V., & Wisniewski, C. M. (2017). On the simulation, economic analysis, and life cycle assessment of batch-mode organic solvent recovery alternatives for the pharmaceutical industry. Clean Technologies and Environmental Policy, 19(10), 2467–2477. https://doi.org/10.1007/s10098-017-1444-8.
Sharma, D., & Hussain, C. M. (2020). Smart nanomaterials in pharmaceutical analysis. Arabian Journal of Chemistry, 13(1), 3319–3343. https://doi.org/10.1016/j.arabjc.2018.11.007.
Sharma, R. K., Pallakonda, S., Raju, G., Sarkar, P., Singla, E., & Singh, H. (2018). An approach to evaluate sustainability of a production process based on its LCA and environment impact analysis: A case study on a food product. Materials Today: Proceedings, 5(5), 12467–12473. https://doi.org/10.1016/j.matpr.2018.02.226.
Sharma, R. K., Sarkar, P., & Singh, H. (2020). Assessing the sustainability of a manufacturing process using life cycle assessment technique—a case of an Indian pharmaceutical company. Clean Technologies and Environmental Policy, 22(6), 1269–1284. https://doi.org/10.1007/s10098-020-01865-4.
Siegert, M. W., Saling, P., Mielke, P., Czechmann, C., Emara, Y., & Finkbeiner, M. (2020). Cradle-to-grave life cycle assessment of an ibuprofen analgesic. Sustainable Chemistry and Pharmacy, 18, 100329. https://doi.org/10.1016/j.scp.2020.100329.
Singh, P. K., & Sarkar, P. (2019). A framework based on fuzzy AHP-TOPSIS for prioritizing solutions to overcome the barriers in the implementation of ecodesign practices in SMEs. International Journal of Sustainable Development & World Ecology. https://doi.org/10.1080/13504509.2019.1605547.
Slater, C. S., & Savelski, M. J. (2009). Towards a Greener Manufacturing Environment. 78–83
Sousa, A. C., Veiga, A., Maurício, A. C., Lopes, M. A., Santos, J. D., & Neto, B. (2020). Assessment of the environmental impacts of medical devices: A review. Environment Development and Sustainability, 23, 9641–9666. https://doi.org/10.1007/s10668-020-01086-1.
The Pharmaceutical Industry and Global Health. (2017). International Federation of Pharmaceutical Manufacturers & Associations. https://www.ifpma.org/wp-content/uploads/2017/02/IFPMA-Facts-And-Figures-2017.pdf.
The Pharmaceutical Industry in Figures. (2017). European Federation of Pharmaceutical Industries and Association. https://www.efpia.eu/media/219735/efpia-pharmafigures2017_statisticbroch_v04-final.pdf.
Tillman, A. M., Ekvall, T., Baumann, H., & Rydberg, T. (1994). Choice of system boundaries in life cycle assessment. Journal of Cleaner Production, 2(1), 21–29. https://doi.org/10.1016/0959-6526(94)90021-3.
Tridech, S., & Cheng, K. (2010). An investigation on the framework for EREE-based low carbon manufacturing. In: Responsive manufacturing-green manufacturing (ICRM 2010), 5th international conference on responsive manufacturing, p. 257–267. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5629181.
Vinodh, S., Ben Ruben, R., & Asokan, P. (2016). Life cycle assessment integrated value stream mapping framework to ensure sustainable manufacturing: A case study. Clean Technologies and Environmental Policy, 18(1), 279–295. https://doi.org/10.1007/s10098-015-1016-8.
Vozzola, E., Overcash, M., & Griffing, E. (2018). Life cycle assessment of reusable and disposable cleanroom coveralls. PDA Journal of Pharmaceutical Science and Technology, 72(3), 236–248. https://doi.org/10.5731/pdajpst.2017.007864.
Welz, T., Hischier, R., & Hilty, L. M. (2011). Environmental impacts of lighting technologies—Life cycle assessment and sensitivity analysis. Environmental Impact Assessment Review, 31(3), 334–343. https://doi.org/10.1016/j.eiar.2010.08.004.
Wernet, G., Conradt, S., Isenring, H. P., Jiménez-González, C., & Hungerbühler, K. (2010). Life cycle assessment of fine chemical production: A case study of pharmaceutical synthesis. The International Journal of Life Cycle Assessment, 15(3), 294–303. https://doi.org/10.1007/s11367-010-0151-z.
Williams, A. S. (2009). Life cycle analysis: A step by step approach. Champaign, IL: Illinois Sustainable Technology Center. [accessed 2016 Mar 8]. http://www.ideals.illinois.edu/handle/2142/14450.
Yee, K. F., Tan, K. T., Abdullah, A. Z., & Lee, K. T. (2009). Life cycle assessment of palm biodiesel: Revealing facts and benefits for sustainability. Applied Energy, 86, S189–S196. https://doi.org/10.1016/j.apenergy.2009.04.014.
Zaid, A., Rinno, T., Jaradat, N., Jodeh, S., & Khammash. (2013). Interchangeability between paracetamol tablets marketed in Palestine. Is there a quality reason for a higher price? Eastern Mediterranean Health Journal, 19(6), 542–546. https://doi.org/10.26719/2013.19.6.542.
Zanjirani Farahani, R., Asgari, N., & Davarzani, H. (Eds.). (2009). Supply chain and logistics in National, International and Governmental environment. Heidelberg: Physica-Verlag HD. https://doi.org/10.1007/978-3-7908-2156-7.
Zerazion, E., Rosa, R., Ferrari, E., Veronesi, P., Leonelli, C., Saladini, M., & Ferrari, A. M. (2016). Phytochemical compounds or their synthetic counterparts? A detailed comparison of the quantitative environmental assessment for the synthesis and extraction of curcumin. Green Chemistry, 18(6), 1807–1818. https://doi.org/10.1039/C6GC00090H.
Acknowledgements
The authors wish to acknowledge the DST funding for this work through the DST-EPSRC grant on project, Engineering driven sustainable supply network design.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Sharma, R.K., Raju, G., Sarkar, P. et al. Comparing the environmental impacts of paracetamol dosage forms using life cycle assessment. Environ Dev Sustain 24, 12446–12466 (2022). https://doi.org/10.1007/s10668-021-01948-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10668-021-01948-2