Skip to main content

Advertisement

Log in

Predicting climate change and its impact on future occurrences of vector-borne diseases in West Bengal, India

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Climate change is a concerning matter nowadays. It has a long-term effect on human health by spreading vector-borne diseases throughout the world, and West Bengal is not an exception. Vector-borne diseases are life-threatening risk for human; approximately 27,437 people have been infected (2016) every year by this giant killer in West Bengal of India. Temperature and rainfall, two important parameters, have directly influenced the vector-borne diseases. An association between vector-borne diseases and climatic conditions has been established by using geographically weighted regression (GWR) technique. GWR resulted overall r square value more than 0.523 in every case of diseases signifies that the climatic parameters (temperature and rainfall) and vector-borne diseases (Dengue, Malaria, Japanese Encephlities) are strongly correlated. The climatic parameters and positive cases of diseases were mapped out by using inverse distance weight (IDW) interpolation technique in this study. Artificial neural network (ANN) was performed to predict and forecast the climatic condition. The predicted findings have been validated by root mean square error (RMSE) (temperature: 0.301; rainfall: 0.380, i.e., acceptable). This study revealed an insight between climate variables and vector-borne cases in different districts of West Bengal to better understand the effects of climate variability on these diseases. A novel approach of this study is to forecast the spreading of vector-borne diseases for incoming day in West Bengal. After a critical analysis, temperature and rainfall were found to be potent factors for the development of vectors (Aedes Aegypti and Aedes albopictus), and based on this, the risk of vector-borne diseases has been predicted for upcoming years. Forecasted climatic parameters showed that almost all the districts of West Bengal would be reached in a climatic condition where there would be a chance of spreading of vector-borne diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abeku, T. A., Hay, S. I., Ochola, S., Langi, P., Beard, B., de Vlas, S. J., & Cox, J. (2004). Malaria epidemic early warning and detection in African highlands. Trends in Parasitology, 20(9), 400–405.

    Article  Google Scholar 

  • Abraham, A., Steinberg, D., & Philip, N. S. (2001). Rainfall forecasting using soft computing models and multivariate adaptive regression splines. IEEE SMC Transactions, Special Issue on Fusion of Soft Computing and Hard Computing in Industrial Applications, 1: 1–6.

  • Arcari, P., Tapper, N., & Pfueller, S. (2007). Regional variability in relationships between climate and dengue/DHF in Indonesia. Singapore Journal of Tropical Geography, 28(3), 251–272.

    Article  Google Scholar 

  • Arunachalam, N., Murty, U., Kabilan, L., Balasubramanian, A., Thenmozhi, V., Narahari, D., & Satyanarayana, K. (2004). Studies on dengue in rural areas of Kurnool District, Andhra Pradesh, India. Journal of the American Mosquito Control Association, 20(1), 87–90.

    CAS  Google Scholar 

  • Azuz-Adeath, I., & Yañez-Arancibia, A. (2018). Climate change: Ecological and socio economic dimensions in the coastal zone. Ecological Engineering, 130, 228.

    Article  Google Scholar 

  • Barker, C. M., & Reisen, W. K. (2019). Epidemiology of vector-borne diseases in medical and veterinary entomology (pp. 33–49). Cambridge: Academic Press.

    Google Scholar 

  • Bernstein, L., Bosch, P., Canziani, O., Chen, Z., Christ, R., Davidson, O & Kundzewicz, Z. W. (2008). Climate change 2007: Synthesis report: An assessment of the intergovernmental panel on climate change. IPCC.

  • Bhattacharya, S., Sharma, C., Dhiman, R. C., & Mitra, A. P. (2006). Climate change and malaria in India. Current Science, 90(3), 369–375.

    Google Scholar 

  • Booth, M. (2018). Climate change and the neglected tropical diseases. Advances in Parasitology, 100, 39–126.

  • Choe, Y. J., Taurel, A. F., Nealon, J., Seo, H. S., & Kim, H. S. (2018). Systematic review of seroepidemiological studies on Japanese encephalitis in the Republic of Korea. International Journal of Infectious Diseases, 67, 14–19.

    Article  Google Scholar 

  • Christodoulou, C. I., Michaelides, S. C., Gabella, M., & Pattichis, C. S. (2004). Prediction of rainfall rate based on weather radar measurements. In 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541) (Vol. 2, pp. 1393–1396). IEEE.

  • Contreras, D. A., Bondeau, A., Guiot, J., Kirman, A., Hiriart, E., Bernard, L., & Fader, M. (2019). From paleoclimate variables to prehistoric agriculture: Using a process-based agro-ecosystem model to simulate the impacts of Holocene climate change on potential agricultural productivity in Provence, France. Quaternary International, 501, 303–316.

    Article  Google Scholar 

  • De Lisle, S. P., Goedert, D., Reedy, A. M., & Svensson, E. I. (2018). Climatic factors and species range position predict sexually antagonistic selection across taxa. Philosophical Transactions of the Royal Society b: Biological Sciences, 373(1757), 20170415.

    Article  Google Scholar 

  • Dhiman, R. C., Pahwa, S., Dhillon, G. P. S., & Dash, A. P. (2010). Climate change and threat of vector-borne diseases in India: Are we prepared? Parasitology Research, 106(4), 763–773.

    Article  Google Scholar 

  • Diakou, A., Di Cesare, A., Morelli, S., Colombo, M., Halos, L., Simonato, G., & Traversa, D. (2019). Endoparasites and vector-borne pathogens in dogs from Greek islands: Pathogen distribution and zoonotic implications. PLoS Neglected Tropical Diseases, 13(5), e0007003.

    Article  CAS  Google Scholar 

  • Diesfeld, H. J., & Hecklau, H. K. (1978). The diseases of the Country Kenya (pp. 44–78). Springer.

    Google Scholar 

  • Eder, M., Cortes, F., de SiqueiraFilha, N. T., de França, G. V. A., Degroote, S., Braga, C., & Martelli, C. M. T. (2018). Scoping review on vector-borne diseases in urban areas: Transmission dynamics, vectorial capacity and co-infection. Infectious Diseases of Poverty, 7(1), 90.

    Article  Google Scholar 

  • Eikenberry, S. E., & Gumel, A. B. (2018). Mathematical modeling of climate change and malaria transmission dynamics: A historical review. Journal of Mathematical Biology, 77(4), 857–933.

    Article  Google Scholar 

  • El-Shafie, A., Noureldin, A., Taha, M., Hussain, A., & Mukhlisin, M. (2012). Dynamic versus static neural network model for rainfall forecasting at Klang River Basin, Malaysia. Hydrology and Earth System Sciences, 16(4), 1151–1169.

  • Field, C. B. (2014). Climate change 2014–Impacts, adaptation and vulnerability: Regional aspects. Cambridge University Press.

    Book  Google Scholar 

  • Foden, W. B., Young, B. E., Akçakaya, H. R., Garcia, R. A., Hoffmann, A. A., Stein, B. A., & Hole, D. G. (2019). Climate change vulnerability assessment of species. Climate Change, 10(1), e551.

    Google Scholar 

  • Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2003). Geographically weighted regression: The analysis of spatially varying relationships. Wiley.

    Google Scholar 

  • García, J. L. S., & Sanz, J. M. D. (2018). Climate change, ethics and sustainability: An innovative approach. Journal of Innovation & Knowledge, 3(2), 70–75.

    Article  Google Scholar 

  • Gholami-Borujen, F. (2018). A review of the effects of climate change with an emphasis on burden of waterborne diseases. Iranian Journal of Health Sciences, 6(4), 47–56.

    Google Scholar 

  • Ghosh, S., Guchhait, S. K., & Hu, X. F. (2015). Characterization and evolution of primary and secondary laterites in northwestern Bengal Basin, West Bengal India. Journal of Palaeogeography, 4(2), 203–230.

    Article  Google Scholar 

  • Githeko, A. K., Lindsay, S. W., Confalonieri, U. E., & Patz, J. A. (2000). Climate change and vector-borne diseases: A regional analysis. Bulletin of the World Health Organization, 78, 1136–1147.

    CAS  Google Scholar 

  • Hashem, A. M., Sohrab, S. S., El-Kafrawy, S. A., Abd-Alla, A. M., El-Ela, S. A., Abujamel, T. S., & Azhar, E. I. (2018). Diversity of dengue virus-3 genotype III in Jeddah, Saudi Arabia. Acta Tropica, 183, 114–118.

    Article  CAS  Google Scholar 

  • Hunter, P. R. (2003). Climate change and waterborne and vector-borne disease. Journal of Applied Microbiology, 94, 37–46.

    Article  Google Scholar 

  • IPCC Fourth Assessment Report: Climate Change 2007. Available at http://www.ipcc.ch/publications_and_data

  • Karimi, V., Karami, E., & Keshavarz, M. (2018). Climate change and agriculture: Impacts and adaptive responses in Iran. Journal of Integrative Agriculture, 17(1), 1–15.

    Article  Google Scholar 

  • Kim, K. S. (2019). Current challenges in the development of vaccines and drugs against emerging vector-borne diseases. Current medicinal chemistry, 26, 2974.

    Article  CAS  Google Scholar 

  • Kinfe, E. (2018). Studies on Species Composition And Behaviour of Anopheles Mosquitoes (Diptera: Culicidae) and Insecticide Resistance Management Option For The Control of Malaria Vectors in Selected Sites in Butajira Area, Southern Ethiopia (Doctoral dissertation, Addis Ababa University).

  • Kovats, R. S., & Hajat, S. (2008). Heat stress and public health: A critical review. Annual Review of Public Health, 29, 41–55.

    Article  Google Scholar 

  • Kumar, P., Masago, Y., Mishra, B. K., & Fukushi, K. (2018). Evaluating future stress due to combined effect of climate change and rapid urbanization for Pasig-Marikina River, Manila. Groundwater for Sustainable Development, 6, 227–234.

    Article  Google Scholar 

  • Leffers, J., & Butterfield, P. (2018). Nurses play essential roles in reducing health problems due to climate change. Nursing Outlook, 66(2), 210–213.

    Article  Google Scholar 

  • Lu, K., & Wang, L. (2011). A novel nonlinear combination model based on support vector machine for rainfall prediction. In 2011 Fourth International Joint Conference on Computational Sciences and Optimization (pp. 1343–1346). IEEE.

  • Luk, K. C., Ball, J. E., & Sharma, A. (2001). An application of artificial neural networks for rainfall forecasting. Mathematical and Computer Modelling, 33(6–7), 683–693.

    Article  Google Scholar 

  • Mabel, M. C., & Fernandez, E. (2008). Analysis of wind power generation and prediction using ANN: A case study. Renewable Energy, 33(5), 986–992.

    Article  Google Scholar 

  • Mukul, S. A., Alamgir, M., Sohel, M. S. I., Pert, P. L., Herbohn, J., Turton, S. M., & Laurance, W. F. (2019). Combined effects of climate change and sea-level rise project dramatic habitat loss of the globally endangered Bengal tiger in the Bangladesh Sundarbans. Science of the Total Environment, 663, 830–840.

    Article  CAS  Google Scholar 

  • Musso, D., Rodriguez-Morales, A. J., Levi, J. E., Cao-Lormeau, V. M., & Gubler, D. J. (2018). Unexpected outbreaks of arbovirus infections: Lessons learned from the Pacific and tropical America. The Lancet Infectious Diseases, 18(11), e355–e361.

    Article  Google Scholar 

  • Mutheneni, S. R., Morse, A. P., Caminade, C., & Upadhyayula, S. M. (2017). Dengue burden in India: Recent trends and importance of climatic parameters. Emerging Microbes & Infections, 6(1), 1–10.

    Article  Google Scholar 

  • Patz, J. A., Martens, W. J., Focks, D. A., & Jetten, T. H. (1998). Dengue fever epidemic potential as projected by general circulation models of global climate change. Environmental Health Perspectives, 106(3), 147–153.

    Article  CAS  Google Scholar 

  • Paz, S. (2019). Effects of climate change on vector-borne diseases: An updated focus on West Nile virus in humans. Emerging Topics in Life Sciences, 3(2), 143–152.

    Article  Google Scholar 

  • Pfeiffer, M. B. (2018). Lyme: The first epidemic of climate change. Island Press.

    Google Scholar 

  • Rogers, D. J., & Randolph, S. E. (2006). Climate change and vector-borne diseases. Advances in Parasitology, 62, 345–381.

    Article  CAS  Google Scholar 

  • San José, R., Pérez, J. L., Pérez, L., & Barras, R. M. G. (2018). Effects of climate change on the health of citizens modelling urban weather and air pollution. Energy, 165, 53–62.

    Article  CAS  Google Scholar 

  • Tanser, F. C., Sharp, B., & Le Sueur, D. (2003). Potential effect of climate change on malaria transmission in Africa. The Lancet, 362(9398), 1792–1798.

    Article  Google Scholar 

  • Tewari, S. C., Thenmozhi, V., Arunachalam, N., Philip Samuel, P., & Tyagi, B. K. (2008). Desiccated vector mosquitoes used for the surveillance of Japanese encephalitis virus activity in endemic southern India. Tropical Medicine & International Health, 13(2), 286–290.

    Article  CAS  Google Scholar 

  • Tseng, W. C., Chen, C. C., Chang, C. C., & Chu, Y. H. (2009). Estimating the economic impacts of climate change on infectious diseases: A case study on dengue fever in Taiwan. Climatic Change, 92(1–2), 123–140.

    Article  Google Scholar 

  • Umenai, T., Krzysko, R., Bektimirov, T. A., & Assaad, F. A. (1985). Japanese encephalitis: Current worldwide status. Bulletin of the World Health Organization, 63(4), 625.

    CAS  Google Scholar 

  • Van Impe, J., Smet, C., Tiwari, B., Greiner, R., Ojha, S., Stulić, V., & RežekJambrak, A. (2018). State of the art of nonthermal and thermal processing for inactivation of micro-organisms. Journal of Applied Microbiology, 125(1), 16–35.

    Article  CAS  Google Scholar 

  • Van Lieshout, M., Kovats, R. S., Livermore, M. T. J., & Martens, P. (2004). Climate change and malaria: Analysis of the SRES climate and socio-economic scenarios. Global Environmental Change, 14(1), 87–99.

    Article  Google Scholar 

  • Villar, L., Dayan, G. H., Arredondo-García, J. L., Rivera, D. M., Cunha, R., Deseda, C., & Rey, L. C. (2015). Efficacy of a tetravalent dengue vaccine in children in Latin America. New England Journal of Medicine, 372(2), 113–123.

    Article  CAS  Google Scholar 

  • Wagner, S., Guidi, V., Torgerson, P. R., Mathis, A., & Schaffner, F. (2018). Diversity and seasonal abundances of mosquitoes at potential arboviral transmission sites in two different climate zones in Switzerland. Medical and Veterinary Entomology, 32(2), 175–185.

    Article  CAS  Google Scholar 

  • Wang, Y., Chen, L., Song, Z., Huang, Z., Ge, E., Lin, L., & Luo, M. (2019). Human-perceived temperature changes over South China: Long-term trends and urbanization effects. Atmospheric Research, 215, 116–127.

    Article  Google Scholar 

  • Wardrop, N. A., Barnett, A. G., Atkinson, J. A., & Clements, A. C. (2013). Plasmodium vivax malaria incidence over time and its association with temperature and rainfall in four counties of Yunnan Province China. Malaria Journal, 12(1), 452.

    Article  Google Scholar 

  • Watts, N., Amann, M., Ayeb-Karlsson, S., Belesova, K., Bouley, T., Boykoff, M., & Cox, P. M. (2018). The Lancet Countdown on health and climate change: From 25 years of inaction to a global transformation for public health. The Lancet, 391(10120), 581–630.

    Article  Google Scholar 

  • Global tuberculosis report 2013. World Health Organization. Available at http://apps.who.int/iris/bitstream/handle/10665/91355/9789241564656_eng.pdf?sequence=1

  • Yaseen, Z. M., Jaafar, O., Deo, R. C., Kisi, O., Adamowski, J., Quilty, J., & El-Shafie, A. (2016). Stream-flow forecasting using extreme learning machines: A case study in a semi-arid region in Iraq. Journal of Hydrology, 542, 603–614.

    Article  Google Scholar 

  • Souza, A. F., & Longhi, S. J. (2019). Disturbance history mediates climate change effects on subtropical forest biomass and dynamics. Ecology and Evolution, 9(12), 7184–7199.

    Article  Google Scholar 

  • Kurup, S. P., Obeng-Adjei, N., Anthony, S. M., Traore, B., Doumbo, O. K., Butler, N. S., & Harty, J. T. (2017). Regulatory T cells impede acute and long-term immunity to blood-stage malaria through CTLA-4. Nature medicine, 23(10), 1220–1225

    Article  CAS  Google Scholar 

  • Livada, I., Synnefa, A., Haddad, S., Paolini, R., Garshasbi, S., Ulpiani, G., ... & Santamouris, M. (2019). Time series analysis of ambient air-temperature during the period 1970–2016 over Sydney, Australia. Science of the Total Environment648, 1627–1638.

  • Rogers, D. J., Randolph, S., Lindsay, S., & Thomas, C. (2001). Vector-borne diseases and climate change. Health effects of climate change (Expert Group on Climate Change and Health in the United Kingdom). Department of Health, London, United Kingdom, 85–117.

Download references

Funding

No fund was received for conducting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arijit Das.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest associated with the manuscript.

Ethical approval

Secondary data are mainly used in this study which are available in public domain. No ethical approval is needed for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, J., Das, A. & Khatun, R. Predicting climate change and its impact on future occurrences of vector-borne diseases in West Bengal, India. Environ Dev Sustain 24, 11871–11894 (2022). https://doi.org/10.1007/s10668-021-01920-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01920-0

Keywords

Navigation