Skip to main content

Advertisement

Log in

Case study of augmenting livelihood of fishing community at Sagar Island, India, through solar thermal dryer technology

  • Case study
  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Drying of fish at the Sagar Island (21.7269° N, 88.1096° E) is generally carried out in open sun on the seashore on plastic sheets or mat of palm leaves. This is not an environment-friendly and healthy practice. To alleviate the limitations of open sun drying, 600 kg (300 kg × 2) walk-in solar thermal dryer was installed at a fishing cooperative. The dryer consequently augmented the income of the fisher folk by enhancing throughput and refining the quality of dried fish. The design incorporated, (a) 80% UV cut-off film to take care of appearance of the dried fish; (b) facilitating proper air flow pattern for uniform both side drying; (c) completely dismantlable system to take care of incoming storms/cyclones in advance; (d) solar photovoltaic powered dehumidifiers to control the relative humidity at night and achieve a dried batch in less than 24 h. The fabricated solar thermal dryer had drying temperature in the range of 36.9–53.1 °C throughout the day. Due to the use of the dehumidifiers, an entire batch of fish could be dried from an initial 80% to final 10% moisture content (wet basis) in less than 24 h compared to 38 h in open sun drying. The solar thermal drying efficiency was 30.24% and specific energy consumption was found to be 2.35 kg/kWh. The embodied energy was 10,756 kWh and CO2 emission was calculated to be 422 kg per year, which was lower than other fossil-driven drying systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmadi, G. R., & Toghraie, D. (2015). Parallel feed water heating repowering of a 200 MW steam power plant. Journal of Power Technologies, 95(4), 288–301.

    Google Scholar 

  • Ahmadi, G. R., & Toghraie, D. (2016). Energy and exergy analysis of Montazeri steam power plant in Iran. Renewable and Sustainable Energy Reviews, 56, 454–463.

    Article  Google Scholar 

  • Ahmadi, G. R., Toghraie, D., & Akbari, O. A. (2017a). Efficiency improvement of a steam power plant through solar repowering. International Journal of Exergy, 22(2), 158–182.

    Article  CAS  Google Scholar 

  • Ahmadi, G. R., Toghraie, D., & Akbari, O. A. (2017b). Solar parallel feed water heating repowering of a steam power plant: A case study. Renewable and Sustainable Energy Reviews, 77, 474–485.

    Article  Google Scholar 

  • Ahmadi, G. R., Toghraie, D., Azimian, A., & Akbari, O. A. (2017c). Evaluation of synchronous execution of full repowering and solar assisting in a 200 MW power plant, a case study. Applied Thermal Engineering, 112, 111–123.

    Article  Google Scholar 

  • Ahmadi, G. R., Toghraie, D., & Akbari, O. A. (2018). Technical and Environmental analysis of repowering the existing CHP system in a petrochemical chart: A case study. Energy, 159, 937–949.

    Article  Google Scholar 

  • Ahmadi, G. R., Toghraie, D., & Akbari, O. A. (2019). Energy, exergy and environmental (3E) analysis of the existing CHP system in a petrochemical plant. Renewable and Sustainable Energy Reviews, 99, 234–242.

    Article  CAS  Google Scholar 

  • Ayyappan, S. (2018). Performance and CO2 mitigation analysis of a solar greenhouse dryer for coconut drying. Energy and Environment. https://doi.org/10.1177/0958305X18781891.

    Article  Google Scholar 

  • Bala, B. K., & Woods, J. L. (1994). Simulation of the indirect natural convection solar drying of rough rice. Solar Energy, 53(3), 259–266.

    Article  Google Scholar 

  • Bala, B. K. (1997). Drying and storage of cereal grains. Oxford & IBH Publishing Co. Pvt. Ltd.

    Google Scholar 

  • Bala, B. K., & Mondol, M. R. A. (2001). Experimental investigation on solar drying of fish using solar tunnel dryer. Drying Technology, 19(2), 427–436.

    Article  CAS  Google Scholar 

  • Bellos, E., Tzivanidis, C., & Tsifis, G. (2017). Energetic, exergetic, economic and environmental (4E) analysis of a solar assisted refrigeration system for various operation scanerios. Energy Conversion and Management, 148, 1055–1069.

    Article  CAS  Google Scholar 

  • Chakraborty, K. (1986). Fish and fishries resources in the mangrove swamps of Sundarbans, West Bengal-an in-Depth Study. Indian Forester, 112, 538–542.

    Google Scholar 

  • Chowdhury, M. M. I., Bala, B. K., & Haque, M. A. (2011). Energy and exergy analysis of the solar drying of jackfruit leather. Biosystems Engineering, 110, 222–229.

    Article  Google Scholar 

  • Dejchanchaiwong, R., Arkasuwan, A., Kumar, A., & Tekasakul, P. (2016). Mathematical modelling and performance investigation of mixed-mode and indirect solar dryers for natural rubber sheet drying. Energy for Sustainable Development, 34, 44–53.

    Article  Google Scholar 

  • Dubiri, S., Khodabandeh, E., Poorfar, A. K., Mashayekhi, R., Toghraie, D., & AbadianZade, S. A. (2018). Parametric investigation of thermal characteristics in trapezoidal cavity receiver for a linear fresnel solar collector concentrators. Energy, 153, 17–26.

    Article  Google Scholar 

  • Dutta, D., Chattoadhyay, R. N., & Deb, S. (2011). Prospective livelihood opportunities from the mangroves of Sundarbans, India. Research Journal of Environmental Science, 5, 536–543.

    Article  CAS  Google Scholar 

  • Edmonds, I. (2018). Low cost realisation of a high temperature solar cooker. Renewable Energy, 121, 94–101.

    Article  Google Scholar 

  • Esfe, M. H., Hajmohammad, H., Toghraie, D., Rostamian, H., Mahian, O., & Wongwises, S. (2017). Multi-objective optimization of nanofluid flow in double tube heat exchangers for applications in energy systems. Energy, 137, 160–171.

    Article  CAS  Google Scholar 

  • Esper, A. & Muhlbauer, W. (1993). Development and Dissemination of Solar Tunnel Drier. ISES Solar World Congress, Budapest 22.

  • Forson, F. K., Akuffo, F. O., & Nazha, A. A. (1996). Natural convection solar crop-dryers of commercial scale in Ghana: Design, construction and performance. International Journal of Ambient Energy, 17(3), 123–130.

    Article  Google Scholar 

  • Fudholi, A., Othman, M. Y., Ruslan, M. H., & Sopian, K. (2013). Drying of Malaysian Capsicum annuum L. (redchili) dried by open and solar drying. International Journal of Photoenergy. https://doi.org/10.1155/2013/167895

    Article  Google Scholar 

  • Funk, P. A. (2000). Evaluating the international standard procedure for testing solar cookers and reporting performance. Solar Energy, 68, 1–7.

    Article  Google Scholar 

  • Gool, W. V. (1997). Energy policy: Fairy tales and factualities. Innovation and Technology—Strategies and Policies, 93–105. https://doi.org/10.1007/978-0-585-29606-7_6.

  • Govind, & Tiwari, G.N. (1984). Economic analysis of some solar energy systems. Energy Conversion and Management, 24(2), 131–135. https://doi.org/10.1016/0196-8904(84)90024-4

  • He, H., Wang, L., Yuan, J., Wang, Z., Fu, Z., & Liang, K. (2019). Performance evaluation of solar absorption-compression cascade refrigeration system with an integrated air-cooled compression cycle. Energy Conversion and Management, 201(1), 112–153.

    Google Scholar 

  • Jain, D., & Pathare, P. B. (2007). Study the drying kinetics of open sun drying of fish. Journal of Food Engineering, 78, 1315–1319.

    Article  Google Scholar 

  • Jain, R. (2007). Clean technologies: Implementation and technology transfer challenges. Clean Technologies and Environmental Policies, 9(2), 77–79.

    Article  Google Scholar 

  • Janjai, S., Lamlert, N., Intawee, P., Mahayothee, B., Bala, B. K., Nagle, M., & Muller, J. (2009). Experimental and simulated performance of a PV-ventilated solar greenhouse dryer for drying of peeled longan and banana. Solar Energy, 83, 1550–1565.

    Article  CAS  Google Scholar 

  • Janjai, S., Khamvongsa, V., & Bala, B. K. (2007). Development, design, and performance of a PV-ventilated greenhouse dryer. International Energy Journal, 8, 249–258.

    Google Scholar 

  • Jozaalizadeh, T., & Toghraie, D. (2019). Numerical investigation behaviour of reacting flow for flameless oxidation technology of MLID combustion: Effect if fluctuating temperature of inlet co-flow. Energy, 178, 530–537.

    Article  CAS  Google Scholar 

  • Kline, S. J., & McClintock, F. A. (1953). Describing uncertainties in single sample experiments. Mech-Eng, 75, 3–8.

    Google Scholar 

  • Kumar, A., Ranjan, S., Prakash, O., & Shukla, A. (2017). Exergy analysis of solar dryers. In O. Prakash & A. Kumar (Eds.), Solar drying technology green energy and technology. Springer.

    Google Scholar 

  • Madhlopa, A., & Ngwalo, G. (2007). Solar dryer with thermal storage and biomass-backup heater. Solar Energy, 81, 449–462.

    Article  Google Scholar 

  • Mehta, P., Samaddar, S., Patel, P., Markam, B., & Maiti, S. (2018). Design and performance analysis of a mixed mode tent-type solar dryer for fish drying in coastal areas. Solar Energy, 170, 671–681.

    Article  Google Scholar 

  • Noman, M., Wasim, A., Ali, M., Jahanzaib, M., Hussain, S., Khurram Ali, M. H., & Muhammad Ali, H. (2019). An investigation of a solar cooker with parabolic trough concentrator. Case studies in Thermal Engineering, 14, 100436.

    Article  Google Scholar 

  • Patel, J., Markam, B. K., & Maiti, S. (2019). Portable water by solar thermal distillation in solar salt works and performance enhancement by integrating with evacuated tubes. Solar Energy, 188, 561–572.

    Article  Google Scholar 

  • Sacilik, K., Keskin, R., & Elicin, A. K. (2006). Mathematical modelling of solar tunnel drying of thin layer organic tomato. Journal of Food Engineering, 73(3), 231–238.

    Article  Google Scholar 

  • Samanta, C., & Bhaumik, U. (2016). Socio-economic status of the fish curers of the dry fish industry of the coastal areas of West Bengal, India. International Journal of Current Research and Academic Review, 4, 84–100.

    Article  Google Scholar 

  • Schirmer, P., Janjai, S., Esper, A., Smitabhindu, R., & Muhlbauer, W. (1996). Experimental investigation of the performance of the solar drier for drying bananas. Renewable Energy, 7(2), 119–129.

    Article  Google Scholar 

  • Sevda, M. S. (2012). Design and development of walk-in type hemicylindrical solar tunnel dryer for industrial use. ISRN Renewable Energy. https://doi.org/10.5402/2012/890820

    Article  Google Scholar 

  • Singh, D. B., & Tiwari, G. N. (2017). Performance analysis of basin type solar stills integrated with N identical photovoltaic thermal compound parabolic concentrator collectors: A comparative study. Solar Energy, 142, 144–158.

    Article  Google Scholar 

  • Shalaby, S. M., Bek, M. A., & El-sebaii, A. A. (2014). Solar dryers with PCM as energy storage medium: A review. Renewable and Sustainable Energy Reviews, 33, 110–116.

    Article  CAS  Google Scholar 

  • Tiwari, A. K., & Somwanshi, A. (2018). Techno-economic analysis of mini solar distillation plants integrated with reservoir of garden fountain for hot and dry climate pf Jodhpur (India). Solar Energy, 160, 216–224.

    Article  Google Scholar 

  • Tiwari, G. N., Das, T., Chen, C. R., & Barnwal, P. (2009). Energy and exergy analyses of greenhouse fish drying. International Journal of Exergy, 6, 620–636.

    Article  Google Scholar 

  • Tiwari, S., & Tiwari, G. N. (2016). Exergoeconomic analysis of photovoltaic-thermal (PVT) mixed mode greenhouse solar dryer. Energy, 114, 155–164.

    Article  Google Scholar 

  • Toghraie, D., Karami, A., Afrand, M., & Karimipour, A. (2018). Effects of geometric parameters on the performance of solar chimney power plants. Energy, 162, 1052–1061.

    Article  Google Scholar 

  • Vaniya, S. K., Bapat, P., & Maiti, S. (2016). Development of seasonally tracked auto-folding reflectors for damage control in V-trough photovoltaic assembly. Solar Energy, 136, 254–259.

    Article  Google Scholar 

  • Watt, M. E., Johnson, A. J., Ellis, M., & Outhred, H. R. (1998). Life-cycle air emissions from PV power systems. Progress in Photovoltaics: Research and Applications, 6, 127–136.

    Article  CAS  Google Scholar 

  • Yuwana, Y., Tarigan, R. N. B., & Silvia, E. (2017). Solar drying modes of catfish. International Journal of Engineering Inventions, 6(4), 06–12.

    Google Scholar 

Download references

Acknowledgements

This work has been supported financially by the Adopt Biotechnology for Community Development (ABCD) 2017-2018 of the Department of Biotechnology, Government of West Bengal, India. The work has also been supported in part by CSIR India as part of an in-house laboratory project. The authors thank Diamond Engineering Enterprises for the installation of the solar thermal dryers according to design. This is CSIR-CSMCRI 036/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subarna Maiti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andharia, J.K., Haldar, S., Samaddar, S. et al. Case study of augmenting livelihood of fishing community at Sagar Island, India, through solar thermal dryer technology. Environ Dev Sustain 24, 11449–11469 (2022). https://doi.org/10.1007/s10668-021-01895-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01895-y

Keywords

Navigation