Skip to main content

Abatement costs of combatting industrial water pollution: convergence across Chinese provinces

Abstract

Industrial water pollution has become one of the largest threats to China's sustainable development and human welfare. Although China has implemented numerous policies in the past decades that have achieved remarkable success, there has been little analysis of the costs of mitigating industrial water pollutants. Understanding the heterogeneity and convergence patterns of abatement costs among Chinese provinces is crucial for cost-effective policies, such as a national trading system. We use a directional distance function model to estimate the abatement cost of chemical oxygen demand (COD) and NH4, and then conduct a convergence analysis of abatement cost to check the patterns of mitigation and convergence. We show that the mean industrial abatement cost across Chinese provinces is 610 Yuan/kg for COD and 4614 Yuan/kg for NH4. At the steady state, the abatement cost is about 786 Yuan/kg for COD and 2235 Yuan/kg for NH4. As theory suggests, a β-convergence pattern is observed for the abatement cost across Chinese provinces. In other words, it is theoretically feasible for China to build up an integrated national trading system for water pollution. We conclude that a pollutant-based trading system is needed and should be updated year by year.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Aigner, D. J., & Chu, S. F. (1968). On Estimating the Industry Production Function. The American Economic Review, 58, 826–839.

    Google Scholar 

  2. Barro, R. J., & Sala-i-Martin, X. (1992). Convergence. Journal of Political Economy, 100, 223–251.

    Article  Google Scholar 

  3. Brännlund, R., Lundgren, T., & Söderholm, P. (2015). Convergence of carbon dioxide performance across Swedish industrial sectors: An environmental index approach. Energy Economics, 51, 227–235.

    Article  Google Scholar 

  4. Carter, L. J. (1968). Water Pollution: Officials Goaded into Raising Quality Standards. Science, 5, 49–51.

    Article  Google Scholar 

  5. Chung, Y. H., Färe, R., & Grosskopf, S. (1997). Productivity and Undesirable Outputs: A Directional Distance Function Approach. Journal of Environmental Management, 51, 229–240.

    Article  Google Scholar 

  6. Criado, C. O., Valente, S., & Stengos, T. (2011). Growth and pollution convergence: Theory and evidence. Journal of Environmental Economics & Management, 62(2), 199–214.

    Article  Google Scholar 

  7. Dasgupta, S., Huq, M., Wheeler, D., & Zhang, C. (2001). Water pollution abatement by Chinese industry: Cost estimates and policy implications. Applied Economics, 33(4), 547–557.

    Article  Google Scholar 

  8. Delvoie, C., Raturi, R., Lovei, M., Serra, T., Dollar, D., Sun, E., Hofman, B., Shen, S., & et., al, . (2007). Water pollution emergencies in China: Prevention and response. World Bank.

  9. Du, L., Hanley, A., & Wei, C. (2015). Marginal abatement costs of carbon dioxide emissions in China: A parametric analysis. Environmental & Resource Economics, 61(2), 191–216.

    Article  Google Scholar 

  10. Easterly, W., Kremer, M., Pritchett, L., & Summers, L. H. (1993). Good Policy or Good Luck? Journal of Monetary Economics., 32(3), 459–483.

    Article  Google Scholar 

  11. Färe, R., Grosskopf, S., Lovell, C. A. K., & Yaisawarng, S. (1993). Derivation of Shadow Prices for Undesirable Outputs: A Distance Function Approach. The Review of Economics and Statistics, 75, 374–380.

    Article  Google Scholar 

  12. Färe, R., Grosskopf, S., Noh, D.-W., & Weber, W. (2005). Characteristics of a polluting technology: Theory and practice. Journal of Econometrics, 126, 469–492.

    Article  Google Scholar 

  13. Färe, R., Martins-Filho, C., & Vardanyan, M. (2010). On functional form representation of multi-output production technologies. Journal of Productivity Analysis, 33, 81–96.

    Article  Google Scholar 

  14. Greenstone, M., He, G., Li, S., Zou, E. 2021. China's War on Pollution: Evidence from the First Five Years. Available at SSRN: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3764874.

  15. Guo, Q. B., & Luo, K. (2021). The spatial convergence and drivers of environmental efficiency under haze constraints - Evidence from China. Environmental Impact Assessment Review, 86, 106513.

    Article  Google Scholar 

  16. Howlett, M., & Joshi-Koop, S. (2011). Transnational learning, policy analytical capacity, and environmental policy convergence: Survey results from Canada. Global Environmental Change, 21, 85–92.

    Article  Google Scholar 

  17. Hu, J.-L., & Wang, S.-C. (2006). Total-factor energy efficiency of regions in China. Energy Policy, 34, 3206–3217.

    Article  Google Scholar 

  18. Jakob, M., Haller, M., & Marschinski, R. (2012). Will history repeat itself? Economic convergence and convergence in energy use patterns. Energy Economics, 34, 95–104.

    Article  Google Scholar 

  19. Jorgenson, A. K. (2006). The Transnational Organization of Production and Environmental Degradation: A Cross-National Study of the Effects of Foreign Capital Penetration on Water Pollution Intensity, 1980–1995*. Social Science Quarterly, 87, 711–730.

    Article  Google Scholar 

  20. King, R. G., & Levine, R. (1994). Capital Fundamentalism, Economic Development, and Economic Growth. Carnegie-Rochester Conference Series on Public Policy., 40, 259–292.

    Article  Google Scholar 

  21. Klarl, T. (2016). Pollution externalities, endogenous health and the speed of convergence in an endogenous growth model. Journal of Macroeconomics, 50, 98–113.

    Article  Google Scholar 

  22. Kumar, S., & Managi, S. (2011). Non-separability and substitutability among water pollutants: Evidence from India. Environment and Development Economics, 16(06), 709–733.

    Article  Google Scholar 

  23. MEE, 2019. Report on the state of the environment in China. Ministry of Environmental Protection of China Beijing, pp. 1–40.

  24. MEP, 2004. Report on the state of the environment in China. Ministry of Environmental Protection of China Beijing, pp. 1–40.

  25. Murty, M. N., & Kumar, S. (2011). Water Pollution in India: An Economic Appraisal. In I. D. F. Company (Ed.), India Infrastructure Report 2011 (pp. 285–298). Oxford University Press.

  26. Portnov, B. A., & Meir, I. (2008). Urban water consumption in Israel: Convergence or divergence? Environmental Science and Policy, 11, 347–358.

    Article  Google Scholar 

  27. Reinhard, S., & Linderhof, V. (2015). Convergence of EU nitrogen surplus, the RDP indicator of water quality. Ecological Indicators, 59, 19–26.

    Article  CAS  Google Scholar 

  28. Rodrik, D. (2013). Unconditional Convergence in Manufacturing. Quarterly Journal of Economics, 128, 165–204.

    Article  Google Scholar 

  29. Sala-i-Martin, X. (1996). Regional cohesion: Evidence and theories of regional growth and convergence. European Economic Review, 40, 1325–1352.

    Article  Google Scholar 

  30. Singh, A., & Gundimeda, H. (2021). Measuring technical efficiency and shadow price of water pollutants for the leather industry in India: A directional distance function approach. Journal of Regulatory Economics, 4, 1–23.

    Google Scholar 

  31. Sun, M. (1983). China Faces Environmental Challenge. Science, 23, 1271–1272.

    Article  Google Scholar 

  32. Tang, K., Gong, C., & Wang, D. (2016). Reduction potential, shadow prices, and pollution costs of agricultural pollutants in China. Science of the Total Environment, 541, 42–50.

    Article  CAS  Google Scholar 

  33. Verspagen, B., 1995. Convergence in the global economy: A broad historical viewpoint. Structural Change and Economic Dynamics, 143–165.

  34. Vu, K. M. (2013). A note on interpreting the beta-convergence effect. Economics Letters, 118, 46–49.

    Article  Google Scholar 

  35. Wang, H., & Lall, S. (2002). Valuing water for Chinese industries: A marginal productivity analysis. Applied Economics, 34(6), 759–765.

    Article  Google Scholar 

  36. Wang, Y., Bian, Y., & Xu, H. (2015). Water use efficiency and related pollutants’ abatement costs of regional industrial systems in China: A slacks-based measure approach. Journal of Cleaner Production, 101, 301–310.

    Article  CAS  Google Scholar 

  37. Wu, D., Li, S., Liu, L., Lin, J., & Zhang, S. (2021). Dynamics of pollutants’ shadow price and its driving forces: an analysis on China’s two major pollutants at provincial level. Journal of Cleaner Production, 283, 124625.

    Article  CAS  Google Scholar 

  38. Xie, H., Shen, M., & Wei, C. (2016). Technical efficiency, shadow price and substitutability of Chinese industrial SO2 emissions: A parametric approach. Journal of Cleaner Production, 112, 1386–1394.

    Article  CAS  Google Scholar 

  39. Xie, H., Shen, M., & Wei, C. (2017). Assessing the abatement potential and cost of Chinese industrial water pollutants. Water Policy, 19, 936–956.

    Article  Google Scholar 

  40. Young, A. T., Higgins, M. J., & Levy, D. (2008). Sigma Convergence versus Beta Convergence: Evidence from U.S. County-Level Data. Journal of Money, Credit and Banking, 40, 1083–1093.

    Article  Google Scholar 

  41. Yu, C. Q., Huang, X., Chen, H., et al. (2019). Managing nitrogen to restore water quality in China. Nature, 567, 516–520.

    Article  CAS  Google Scholar 

  42. Yu, Q., Wu, F., Zhang, Z., Wan, Z., Shen, J., & Zhang, L. (2020). Technical inefficiency, abatement cost and substitutability of industrial water pollutants in Jiangsu province. China. Journal of Cleaner Production, 280, 124260.

    Article  CAS  Google Scholar 

  43. Zhou, P., Ang, B. W., & Poh, K. L. (2008). Measuring environmental performance under different environmental DEA technologies. Energy Economics, 30, 1–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks for the financial support of the National Social Science Foundation of China (No. 19AJY007).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chu Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Wang, X., Shen, M. et al. Abatement costs of combatting industrial water pollution: convergence across Chinese provinces. Environ Dev Sustain (2021). https://doi.org/10.1007/s10668-021-01882-3

Download citation

Keywords

  • Industrial water pollution
  • Abatement cost
  • Convergence analysis
  • China