Skip to main content

Development of termites severity probability map of futa campus area using geographical information system (GIS) technology


Siting of buildings in rural urban development requires that the prevalence of termite activities is considered. The severity of termite activities across 18 selected locations within the FUTA campus was investigated. Defect-free samples of Pterygota macrocarpa wood species prepared according to ASTM D3345-17 (2017) were used as baits for assessing the severity of termite activities. The termite severity probability map of the campus area was prepared with the results obtained from the ASTM D3345-17 visual rating and corresponding gravimetric weight loss data. Results revealed the presence of four termite species within the FUTA campus, namely Macrotermes subhyalinus Rambur, Amitermes evuncifer Silvestri, Ancistrotermes cavithorax Sjöstedt, and Microtermes spp.; the latter being the most prevalent. Areas where Macrotermes subhyalinus Rambur were present experienced higher severity and aggressive termite activities with lower visual ratings and higher weight loss values. Supporting soil property data shows that only the soil bulk density had a strong positive correlation with the severity of termite activities with rs = 0.808 and P = 0.001. The termite severity probability map from these data revealed active ongoing termite activities with sharp transitions observed between the regions belonging to the different severity (color coded) levels. This study has reinforced the necessity for estate developers to carry out termite severity assessment in order to recommend appropriate constructional techniques that will ensure the protection of wood in service.

This is a preview of subscription content, access via your institution.

Fig. 1


Fig. 2


Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. Agbelade, A. D., & Akindele, S. O. (2013). Land use mapping and tree species diversity of federal university of technology, Akure. American International Journal of Contemporary Research, 3(2), 104–105.

    Google Scholar 

  2. Akamigbo, F. (1984). The role of the Nasute termites in the genesis and fertility of Nigerian soils. Pedologie, 34, 179–189.

    Google Scholar 

  3. Akande, J. A. (1992). Location and control of Nigeria ravaging termites. Nigeria Journal of Forestry, 22, 31–36.

    Google Scholar 

  4. Ali, I. G., Sheridan, G., French, J. R., & Ahmed, B. M. (2013). Ecological benefits of termite soil interaction and microbial symbiosis in the soil ecosystem. Journal of Earth Sciences and Geotechnical Engineering, 3(4), 63–85.

    CAS  Google Scholar 

  5. Ancha, P. U., & Asue, J. (2009). Evaluation of fuelwood consumption and implications on the environment: A case study of Makurdi area in Benue state, Nigeria. Journal of Applied Biosciences, 19, 1041–1048.

    Google Scholar 

  6. Ahmed, B. M. (2000). The effects of boron-treated timbers against coptotermes species in Australia. Ph.D. Thesis. Melbourne, Australia: The university of Melbourne.

  7. Arab, A., & Costa-Leonardo, A. M. (2005). Effect of biotic and abiotic factors on the tunneling behavior of Coptotermes gestroi and Heterotermes tenuis (Isoptera: Rhinotermitidae). Behavioural Processes, 70, 32–40.

    Article  Google Scholar 

  8. Cornelius, M. L., & Osbrink, W. L. A. (2010). Effect of soil type and moisture availability on the foraging behavior of the Formosan subterranean termite (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 103, 799–807.

    Article  Google Scholar 

  9. Emmanuel, U. O., & Owoyemi, J. M. (2018). Wood protection technologies: A key solution to dwindling timber resources (The Nigerian Experience). In: B. O. Agbeja, A. C. Adetogun, O. R. Adejoba & I. O. O. Osunsina (Eds.), Proceedings of the 2nd commonwealth forestry association (CFA) conference, Nigeria chapter, federal university of agriculture Abeokuta (FUNAAB) (pp. 289–303) Abeokuta, Ogun State, Nigeria.

  10. Fuwape J. A. (2000). Wood in Africa. FAO forestry paper. FAO Rome, p 80.

  11. Govorushko, S. (2018). Economic and ecological importance of termites: A global review. Entomological Science.

    Article  Google Scholar 

  12. Grimaldi, D, & Engle, M. S. (2005). Evolution of the insects (p. 145). Cambridge University Press.

  13. Harris, W. V. (1971). Termite: Their recognition and control (2nd ed., p 214). London, UK: Longman Publications.

  14. Haverty, M. I., & Nutting, W. L. (1976). Environmental factors affecting geographical distribution of 2 ecologically equivalent termite species in Arizona. American Midland Naturalist, 95, 20–27.

    Article  Google Scholar 

  15. Jouquet, P., Lepage, M., & Velde, B. (2002a). Termite soil preferences and particle selections: Strategies related to ECOLOGICAL requirements. Insects Soiaux, 49, 1–7.

    Article  Google Scholar 

  16. Jouquet, P., Mamou, L., Lepage, M., & Velde, B. (2002b). Effect of termites on clay minerals in tropical soils: Fungus-growing termites as weathering agents. European Journal of Soil Science, 53(4), 521–528.

    Article  Google Scholar 

  17. Jurgenrius, P. D., Van den Ancker, J. A. M., & Mücher, H. J. (1999). The contribution of termites to the microgranular structure of soils on the Uasin Gishue Plateau, Kenya. CATENA, 34, 349–363.

    Article  Google Scholar 

  18. Mahaney, W. C., Zippin, J., Milner, M. W., Sanmugadas, K., Hancock, R. G. V., Aufreiter, S., et al. (1999). Chemistry, mineralogy and microbiology of termite mound soil eaten by the chimpanzees of the Mahale Mountains, Western Tanzania. Journal of Tropical Ecology, 15(5), 565–588.

    Article  Google Scholar 

  19. Nakabonge, G., & Matovu, B. (2021). Variation in susceptibility of Eucalyptus grandis and selected hybrid clones to two termite species Macrotermes bellicosus and M. subhyalinus in Uganda. All Life, 14(1), 120–126.

    CAS  Article  Google Scholar 

  20. Nunes, L., & Nobre, T. (2001). Strategies of subterranean termite control in buildings. In P. B. Lourenco & P. Roca. (Eds.), Historical constructions (pp. 867–874). Lisboa: LNEC Brasil.

  21. O’Brien, R. W., & Slaytor, M. (1982). Role of microorganisms in the metabolism of termites. Australian Journal of Biological Sciences, 35, 239–262.

    CAS  Article  Google Scholar 

  22. Ogunrayi, O. A., Akiseye, F. M., Goldberg, V., & Bernhofer, C. (2016). Descriptive analysis of rainfall and temperature trends over Akure, Nigeria. Journal of Geography and Regional Planning., 9(11), 195–202.

    Article  Google Scholar 

  23. Olaniyan, A., Ibikunle, O. A., Olayanju, A. B., Olagoke, B. E., & Olawoore, W. A. (2015). Effect of Termites on construction timbers in Ibarapa East Local government of Oyo State Nigeria. International Journal of Latest Research in Engineering and Technology (p. 40).

  24. Owoyemi J.M. (2008). Studies on some wood preservative treatment on Gmelina arborea wood against the attack of subterranean Termites. A Thesis submitted for the award of Ph.D. degree at Ekiti State University Ado-Ekiti, p 157.

  25. Owoyemi, J. M., Olaniran, S. O., & Aliyu, D. I. (2013). Effect of density on the natural resistance of ten selected Nigerian wood species to subterranean termites. Pro Ligno, 9(1), 32–40.

    Google Scholar 

  26. Owoyemi, J. M., Adiji, A. O., & Aladejana, J. T. (2017). Resistance of some indigenous tree species to termite attack in Nigeria. Journal of Agricultural and Urban Entomology, 31(1), 10–18.

    Article  Google Scholar 

  27. Owoyemi, J. M., & Emmanuel, U. O. (2018). Preliminary investigation into the natural decay resistance of Nigerian grown Hevea brasiliensis and Mitragyna ciliata wood to Phanerochaete chrysosporium White-Rot Fungus. In IRG49 Scientific conference on wood protection, IRG/WP 18–10919, Johannesburg, South Africa, p 12.

  28. Owoyemi, J. M., Eniabiire, O. M., Emmanuel, U. O., & Fuwape, J. A. (2020). Efficacy of commonly used wood preservatives against Subterranean termites in Akungba-Akoko, Ondo State, Nigeria. Journal of Research in Forestry, Wildlife & Environment, 12(1), 111–121.

    Google Scholar 

  29. Peralta, R. C. G., Menezes, E. B., Carvalho, A. G., & Aguiar-Menezes, E. L. (2004). Wood consumption rates of forest species by Subterranean termites (Isoptera) under field conditions. Revista Árvore, 28(2), 283–289.

    Article  Google Scholar 

  30. Peterson, J., Baum, J., Arama, E., Steller, H., & McCall, K. (2006). Abnormal programmed cell death of mid-stage egg chambers in caspase and cytochrome-c-dmutants. Annual Drosophila Research Conference, 47, 744B.

  31. Rajeev, V., & Sanjeev, A. (2011). Impact of termite activity and its effect on soil composition. Tanzania Journal of Natural and Applied Sciences, 2(2), 399–404.

    Google Scholar 

  32. Sebastian, O., Lai, J. C. S., & Evans, T. A. (2016). Termites utilise clay to build structural supports and so increase foraging resources. Science, 6, 209–290.

    Google Scholar 

  33. Sonti, S. H. (2015). Application of geographic information system (GIS) in forest management. Journal of Geography & Natural Disasters, 5(3), 1–5.

    Article  Google Scholar 

  34. Ssemaganda, I. E., Mugabi, P., & Tumwebaze, S. B. (2011). Effectiveness of selected preservatives in protecting Ugandan grown Eucalyptus grandis wood against termite attack. Maderas. Ciencia y Tecnología, 13(2), 135–142.

    CAS  Article  Google Scholar 

  35. Su, N. Y., & Puche, H. (2003). Tunneling activity of subterranean termites (Isoptera: Rhinotermitidae) in sand with moisture gradients. Journal of Economic Entomology, 96, 88–93.

    Article  Google Scholar 

  36. Wong, Y., & Lee, C. Y. (2010). Influence of different substrate moistures on wood consumption and movement patterns of Microcerotermes crassus and Coptotermes gestroi (Blattodea: Termitidae, Rhinotermitidae). Journal of Economic Entomology, 103, 437–442.

    Article  Google Scholar 

  37. Wood, T. G. (1988). Termites and the soil environment. Biology and Fertility of Soils, 6, 228–236.

    Article  Google Scholar 

Download references


The authors received no financial support for this work.

Author information




All the authors had equal contributions starting from the planning through execution of the research, to the preparation of the manuscript.

Corresponding author

Correspondence to Jacob Mayowa Owoyemi.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest in this research or any aspect of it and the data used therein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.




See (Tables

Table 4 ANOVA table for properties of soil samples obtained from the 18 sampling locations across the FUTA campus area


Table 5 Bulk density of soil samples obtained from the 18 sampling locations across the FUTA campus area.


Table 6 Moisture content (%) of soil samples obtained from the 18 sampling locations across the FUTA campus area.


Table 7 Organic matter content (%) of soil samples obtained from the 18 sampling locations across the FUTA campus area


Table 8 Water-holding capacity (%) of soil samples obtained from the 18 sampling locations across the FUTA campus area


Table 9 ANOVA table for the weight loss of wood samples in the 18 sampling locations across the FUTA campus area


Table 10 Weight loss (%) of wood samples in the 18 sampling locations across the FUTA campus area


Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Owoyemi, J.M., Opara, E.U., Akande, S.O. et al. Development of termites severity probability map of futa campus area using geographical information system (GIS) technology. Environ Dev Sustain (2021).

Download citation


  • Subterranean termites
  • Termites severity probability map
  • GIS technology
  • Wood protection