Skip to main content

Assessment of plastic lumber production in Brazil as a substitute for natural wood

Abstract

This review aimed to analyze plastic lumber manufacturing in Brazil, a country with a large amount of natural wood, and devise strategies to boost production. No studies were found on the development and application of plastic wood in a natural wood producing country that has been significantly affected by deforestation. Wood-plastic composite lumber was used in the present study. The methodology consisted of a bibliographic review, questionnaire, SWOT and TOWS analyses. The questionnaire was completed by plastic lumber manufacturers in order to better understand the positive and negative points of the plastic wood market and production. Information on environmental, economic and technical aspects was collected to support analyses. Brazil has 11 plastic lumber producers with a production capacity of 11 × 103 metric tons, a very small amount when compared to the natural wood market. Established companies are seeking to expand domestic and foreign markets for plastic lumber, which is largely composed of polyethylene with several lignocellulosic fibers, especially wood residue for civil construction applications. According to SWOT analysis, Brazil is developing plastic lumber with several strengths (opportunities). TOWS analysis showed that in order to boost plastic lumber production, make it more competitive and reach international markets, wood and plastic residue should be aimed at manufacturing WPC. Brazil produced around 37 × 106 metric tons of wood residue and discarded approximately 16 × 106 metric tons of plastic waste in landfills, materials that could potentially be used to produce plastic lumber. There are other raw material alternatives for plastic lumber production in the agricultural sector, such as straws and grain husks. However, the country urgently needs to develop a reverse a logistics network and residue collection, as well as conduct research to channel residues to plastic lumber production. Thus, there is a greater likelihood of continued development and, consequently, attracting new markets. There is an attempt to overcome weaknesses (plastic lumber is not used for structural applications), demonstrating the need for strategies that foster technical development for structural applications. Threats (high prices and lack of fiscal incentives) require coping strategies to increase production, thereby reducing its cost. These measures could increase plastic lumber production, making it competitive enough to replace natural wood, and lead to a decline in deforestation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. ABRELPE. (2019). Panorama Dos Sólidos. Panorama dos Resíduos Sólidos no Brasil 2018/2019. www.abrelpe.org.br

  2. American Society for Testing and Materials, A. (2016). D6341 - Standard test method for determination of the linear coefficient of thermal expansion of plastic lumber and plastic lumber shapes between?30 and 140 °F [? 34.4 and 60 °C ]. West Conshohocken. https://doi.org/10.1520/D6341-16.1

  3. Accorsi, R., Cascini, A., Cholette, S., Manzini, R., & Mora, C. (2014). Economic and environmental assessment of reusable plastic containers: A food catering supply chain case study. International Journal of Production Economics, 152, 88–101. https://doi.org/10.1016/j.ijpe.2013.12.014

    Article  Google Scholar 

  4. Agarwal, S., & Gupta, R. K. (2017). Plastics in buildings and construction. In M. Kutz (Ed.), Applied plastics engineering handbook (pp. 635–649). Elsevier. https://doi.org/10.1016/B978-0-323-39040-8.00030-4

  5. Almeida, A. B. (2013). Madeira plástica: Estudo de viabilidade técnico e econômico a partir do resíduo sólido. Cambridge University Press.

    Google Scholar 

  6. AL-Oqla, F. M., & Sapuan, S. M. (2014). Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry. Journal of Cleaner Production, 66, 347–354. https://doi.org/10.1016/j.jclepro.2013.10.050

    CAS  Article  Google Scholar 

  7. Alshomrani, S., & Qamar, S. (2012). Hybrid SWOT-AHP analysis of Saudi Arabia E-Government. International Journal of Computer Applications, 48(2), 1?7. https://doi.org/10.5120/7317-0065

    Article  Google Scholar 

  8. Animpong, M. A. B., Oduro, W. O., Koranteng, J., Ampomah-Benefo, K., Boafo-Mensah, G., Akufo-Kumi, K., et al. (2017). Coupling effect of waste automotive engine oil in the preparation of wood reinforced LDPE plastic composites for panels. South African Journal of Chemical Engineering, 24, 55–61. https://doi.org/10.1016/j.sajce.2017.01.004

    Article  Google Scholar 

  9. Arima, E. Y., Barreto, P., Araújo, E., & Soares-Filho, B. (2014). Public policies can reduce tropical deforestation: Lessons and challenges from Brazil. Land Use Policy, 41(2014), 465–473. https://doi.org/10.1016/j.landusepol.2014.06.026

    Article  Google Scholar 

  10. Asadpourian, Z., Rahimian, M., & Gholamrezai, S. (2020). SWOT-AHP-TOWS analysis for sustainable ecotourism development in the best area in Lorestan Province Iran. Social Indicators Research, 152(1), 289–315. https://doi.org/10.1007/s11205-020-02438-0

    Article  Google Scholar 

  11. Bhaskar, K., Jayabalakrishnan, D., Vinoth Kumar, M., Sendilvelan, S., & Prabhahar, M. (2020). Analysis on mechanical properties of wood plastic composite. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.08.570

    Article  Google Scholar 

  12. Birendra, K. C., Stainback, G. A., & Chhetri, B. B. K. (2014). Community users? and experts? perspective on community forestry in Nepal: a SWOT?AHP analysis. Forests Trees and Livelihoods, 23(4), 217–231. https://doi.org/10.1080/14728028.2014.929982

    Article  Google Scholar 

  13. Biron, M. (2020). Economics relating to fossil and renewable plastics. In M. Biron (Ed.), A practical guide to plastics sustainability (Vol. 2, pp. 371–409). Elsevier. https://doi.org/10.1016/B978-0-12-821539-5.00008-2

  14. Bledzki, A., & Gassan, J. (1999). Composites reinforced with cellulose based fibres. Progress in Polymer Science, 24(2), 221–274. https://doi.org/10.1016/S0079-6700(98)00018-5

    CAS  Article  Google Scholar 

  15. Bolin, C. A., & Smith, S. (2011). Life cycle assessment of ACQ-treated lumber with comparison to wood plastic composite decking. Journal of Cleaner Production, 19(6–7), 620–629. https://doi.org/10.1016/j.jclepro.2010.12.004.

    CAS  Article  Google Scholar 

  16. Bousfield, G., Morin, S., Jacquet, N., & Richel, A. (2018). Extraction and refinement of agricultural plant fibers for composites manufacturing. Comptes Rendus Chimie, 21(9), 897–906. https://doi.org/10.1016/j.crci.2018.07.001

    CAS  Article  Google Scholar 

  17. Braghiroli, F. L., & Passarini, L. (2020). Valorization of biomass residues from forest operations and wood manufacturing presents a wide range of sustainable and innovative possibilities. Current Forestry Reports, 6(2), 172–183. https://doi.org/10.1007/s40725-020-00112-9

    Article  Google Scholar 

  18. BRASIL. (2009). Lei 12187 - Política Nacional sobre Mudança do Clima. Brasília. http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2009/lei/l12187.htm. Accessed 27 June 2020.

  19. Brasil. (2020). Portal Periódicos CAPES. https://www-periodicos-capes-gov-br.ezl.periodicos.capes.gov.br/index.php? Accessed 12 May 2020.

  20. Brasil. (2018). Comex Stat.

  21. Brazil. (2010). Lei no 12.305, 2 de Agosto de 2010. Política Nacional de Resíduos Sólidos. http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2010/lei/l12305.htm. Accessed 9 April 2018.

  22. Bringhenti, J. R., Zandonade, E., & Günther, W. M. R. (2011). Selection and validation of indicators for programs selective collection evaluation with social inclusion. Resources Conservation and Recycling, 55(11), 876–884. https://doi.org/10.1016/j.resconrec.2011.04.010

    Article  Google Scholar 

  23. BUSINESS WIRE. (2017). Growth in housing and construction industries will drive the wood plastic composites market, says technavio | business wire. https://www.businesswire.com/news/home/20170310005591/en/Growth-Housing-Construction-Industries-Drive-Wood-Plastic. Accessed 26 June 2020.

  24. Carroll, D. R., Stone, R. B., Sirignano, A. M., Saindon, R. M., Gose, S. C., & Friedman, M. A. (2001). Structural properties of recycled plastic/sawdust lumber decking planks. Resources Conservation and Recycling, 31(3), 241–251. https://doi.org/10.1016/S0921-3449(00)00081-1

    Article  Google Scholar 

  25. Carus, M., Partanen, A. (2017). Bioverbundwerkstoffe - Naturfaserverstärkte Kunststoffe (NFK) und Holz-Polymer-Werkstoffe (WPC). Gülzow. http://www.fnr.de/fileadmin/allgemein/pdf/broschueren/Broschuere_Bioverbundwerkstoffe-web-V01.pdf.

  26. Carus, M., & Partanen, A. (2018). Natural fibre-reinforced plastics: Establishment and growth in niche markets. JEC Composites Magazine, 55(118), 23–24.

    Google Scholar 

  27. Caulfield, D. F., Clemons, C., Jacobson, R. E., & Rowell, R. M. (2005). Wood thermoplastic composites. In T. Francis (Ed.), Handbook of wood chemistry and wood composites (pp. 365–378). CRC Press.

    Google Scholar 

  28. CEMPRE. (2016). Pesquisa Anual Sobre Coleta Seletiva - 2016. http://cempre.org.br/ciclosoft/id/8. Accessed 26 June 2020.

  29. CEMPRE. (2020). O peso da tributação na cadeia da reciclagem. http://cempre.org.br/informa-mais/id/48/o-peso-da-tributacao-na-cadeia-da-reciclagem. Accessed 26 June 2020.

  30. Chaudemanche, S., Perrot, A., Pimbert, S., Lecompte, T., & Faure, F. (2018). Properties of an industrial extruded HDPE-WPC: The effect of the size distribution of wood flour particles. Construction and Building Materials, 162, 543–552. https://doi.org/10.1016/j.conbuildmat.2017.12.061

    CAS  Article  Google Scholar 

  31. Clemons, C. (2002). Interfacing wood-plastic composites industries in the U.S.,. Forest Products Journal, 52(6), 10––18. https://www.fpl.fs.fed.us/documnts/pdf2002/clemo02b.pdf.

  32. Conke, L. S. (2018). Barriers to waste recycling development: Evidence from Brazil. Resources Conservation and Recycling, 134(March), 129–135. https://doi.org/10.1016/j.resconrec.2018.03.007

    Article  Google Scholar 

  33. Corona, B., Shen, L., Sommersacher, P., & Junginger, M. (2020). Consequential life cycle assessment of energy generation from waste wood and forest residues: The effect of resource-efficient additives. Journal of Cleaner Production, 259, 120948. https://doi.org/10.1016/j.jclepro.2020.120948

    Article  Google Scholar 

  34. Crawford, R. J., Martin, P. J. (2020). General properties of plastics. In Plastics engineering (pp. 1–57). Elsevier. https://doi.org/10.1016/B978-0-08-100709-9.00001-7

  35. Croitoru, C., Spirchez, C., Cristea, D., Lunguleasa, A., Pop, M. A., Bedo, T., et al. (2018a). Calcium carbonate and wood reinforced hybrid PVC composites. Journal of Applied Polymer Science, 135(22), 46317. https://doi.org/10.1002/app.46317

    CAS  Article  Google Scholar 

  36. Croitoru, C., Varodi, A. M., Timar, M. C., Roata, I. C., Stanciu, E. M., & Pascu, A. (2018b). Wood-plastic composites based on HDPE and ionic liquid additives. Journal of Materials Science, 53(6), 4132–4143. https://doi.org/10.1007/s10853-017-1826-7

    CAS  Article  Google Scholar 

  37. da Silva, D. N. S. D. (2017). Estudo e Caracterização Mecânica de Compósitos de Matriz Polimérica Reforçado com Fibras de Eucalipto. Universidade do Porto.

    Google Scholar 

  38. De Araujo, V., Vasconcelos, J., Cortez-Barbosa, J., Morales, E., Christoforo, A., Gava, M., et al. (2020). Wood consumption and fixations of carbon dioxide and carbon from timber housing techniques: A Brazilian panorama. Energy and Buildings, 216, 109960. https://doi.org/10.1016/j.enbuild.2020.109960

    Article  Google Scholar 

  39. Elamin, M. A. M., Li, S. X., Osman, Z. A., & Otitoju, T. A. (2020). Preparation and characterization of wood-plastic composite by utilizing a hybrid compatibilizer system. Industrial Crops and Products, 154(June), 112659. https://doi.org/10.1016/j.indcrop.2020.112659

    CAS  Article  Google Scholar 

  40. Ellen MacArthur Foundation. (2016). The New Plastics Economy: Rethinking the future of plastics. Ellen MacArthur Foundation, 120. http://www.https://emf.thirdlight.com/link/faarmdpz93ds-5vmvdf/@/preview/1?o. Accesssed 26 June 2020.

  41. Eriksen, M. K., & Astrup, T. F. (2019). Characterisation of source-separated, rigid plastic waste and evaluation of recycling initiatives: Effects of product design and source-separation system. Waste Management, 87, 161–172. https://doi.org/10.1016/j.wasman.2019.02.006

    CAS  Article  Google Scholar 

  42. Etikan, I. (2017). Developing questionnaire base on selection and designing. Biometrics & Biostatistics International Journal. https://doi.org/10.15406/bbij.2017.05.00150

    Article  Google Scholar 

  43. Faruk, O., Bledzki, A. K., & Matuana, L. M. (2007). Microcellular foamed wood-plastic composites by different processes: A Review. Macromolecular Materials and Engineering, 292(2), 113–127. https://doi.org/10.1002/mame.200600406

    CAS  Article  Google Scholar 

  44. Fearnside, P. M. (2008). Amazon forest maintenance as a source of environmental services. Anais Da Academia Brasileira De Ciências, 80(1), 101–114. https://doi.org/10.1590/S0001-37652008000100006

    Article  Google Scholar 

  45. Fendrich, A. N., Barretto, A., de Faria, V. G., de Bastiani, F., Tenneson, K., Guedes Pinto, L. F., & Sparovek, G. (2020). Disclosing contrasting scenarios for future land cover in Brazil: Results from a high-resolution spatiotemporal model. Science of the Total Environment, 155, 140477. https://doi.org/10.1016/j.scitotenv.2020.140477

    CAS  Article  Google Scholar 

  46. Friedrich, D., & Luible, A. (2016). Standard-compliant development of a design value for wood?plastic composite cladding: An application-oriented perspective. Case Studies in Structural Engineering, 5, 13–17. https://doi.org/10.1016/j.csse.2016.01.001

    Article  Google Scholar 

  47. Fuchigami, Y., Kojiro, K., & Furuta, Y. (2020). Quantification of greenhouse gas emissions from wood-plastic recycled composite (WPRC) and verification of the effect of reducing emissions through multiple recycling. Sustainability, 12, 2449. https://doi.org/10.3390/su12062449

    CAS  Article  Google Scholar 

  48. Gardner, D. J., Han, Y., & Wang, L. (2015). Wood-plastic composite technology. Current Forestry Reports, 1(3), 139–150. https://doi.org/10.1007/s40725-015-0016-6

    Article  Google Scholar 

  49. Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782

    CAS  Article  Google Scholar 

  50. Görener, A., Toker, K., & Uluçay, K. (2012). Application of Combined SWOT and AHP: A case study for a manufacturing Firm. Procedia-Social and Behavioral Sciences, 58, 1525–1534. https://doi.org/10.1016/j.sbspro.2012.09.1139

    Article  Google Scholar 

  51. Gottfried, O., De Clercq, D., Blair, E., Weng, X., & Wang, C. (2018). SWOT-AHP-TOWS analysis of private investment behavior in the Chinese biogas sector. Journal of Cleaner Production, 184, 632–647. https://doi.org/10.1016/j.jclepro.2018.02.173

    Article  Google Scholar 

  52. Gürel, E., & Tat, M. (2017). Swot Analysis: A theoretical review. Journal of International Social Research, 10(51), 994–1006. https://doi.org/10.17719/jisr.2017.1832

    Article  Google Scholar 

  53. Gutberlet, J. (2018). Waste in the city: Challenges and opportunities for urban agglomerations. In M. Ergen (Ed.), Urban agglomeration. InTech. https://doi.org/10.5772/intechopen.72047

  54. Gutberlet, J. (2008). Empowering collective recycling initiatives: Video documentation and action research with a recycling co-op in Brazil. Resources Conservation and Recycling, 52(4), 659–670. https://doi.org/10.1016/j.resconrec.2007.08.006

    Article  Google Scholar 

  55. Gutberlet, J. (2015). Cooperative urban mining in Brazil: Collective practices in selective household waste collection and recycling. Waste Management, 45, 22–31. https://doi.org/10.1016/j.wasman.2015.06.023

    CAS  Article  Google Scholar 

  56. Haque, M.M.-U., Goda, K., Ito, H., Ogoe, S., Okamot, M., Ema, T., et al. (2019a). Melt-viscosity and mechanical behaviour of polypropylene (PP)/wood flour composites: Effect of pulverization of wood flour with and without water. Advanced Industrial and Engineering Polymer Research, 2(1), 42–50. https://doi.org/10.1016/j.aiepr.2018.11.001

    Article  Google Scholar 

  57. Haque, M.M.-U., Goda, K., Ogoe, S., & Sunaga, Y. (2019b). Fatigue analysis and fatigue reliability of polypropylene/wood flour composites. Advanced Industrial and Engineering Polymer Research, 2(3), 136–142. https://doi.org/10.1016/j.aiepr.2019.07.001

    Article  Google Scholar 

  58. Helms, M. M., & Nixon, J. (2010). Exploring SWOT analysis?where are we now? Journal of Strategy and Management, 3(3), 215–251. https://doi.org/10.1108/17554251011064837

    Article  Google Scholar 

  59. Holm, S., Thees, O., Lemm, R., Olschewski, R., & Hilty, L. M. (2018). An agent-based model of wood markets: Scenario analysis. Forest Policy and Economics, 95(May), 26–36. https://doi.org/10.1016/j.forpol.2018.07.005

    Article  Google Scholar 

  60. Huang, L., Wu, Q., Li, S., Ou, R., & Wang, Q. (2018). Toughness and crystallization enhancement in wood fiber-reinforced polypropylene composite through controlling matrix nucleation. Journal of Materials Science, 53(9), 6542–6551. https://doi.org/10.1007/s10853-018-1996-y

    CAS  Article  Google Scholar 

  61. IBÁ - Indústria Brasileira de Árvores. (2019). Relatório 2019 Report 2019. Relatório. https://www.iba.org/datafiles/publicacoes/relatorios/iba-relatorioanual2019.pdf.

  62. INPE - Instituto Nacional de Pesquisas Espaciais. (2019). A estimativa da taxa de desmatamento por corte raso para a Amazônia Legal em 2019 é de 9.762 km2. http://www.inpe.br/noticias/noticia.php?Cod_Noticia=5294. Accessed 26 June 2020.

  63. Jeamtrakull, S., Kositchaiyong, A., Markpin, T., Rosarpitak, V., & Sombatsompop, N. (2012). Effects of wood constituents and content, and glass fiber reinforcement on wear behavior of wood/PVC composites. Composites Part b Engineering, 43(7), 2721–2729. https://doi.org/10.1016/j.compositesb.2012.04.031

    CAS  Article  Google Scholar 

  64. Jha, S., & Bawa, K. S. (2006). Population growth, human development, and deforestation in biodiversity hotspots. Conservation Biology, 20(3), 906–912. https://doi.org/10.1111/j.1523-1739.2006.00398.x

    CAS  Article  Google Scholar 

  65. Jones, D., & Brischke, C. (2017). Performance of Bio-based building materials (1st Editio.). Woodhead Publishing. https://www.elsevier.com/books/performance-of-bio-based-building-materials/jones/978-0-08-100982-6. Accessed 26 June 2020.

  66. Kazemi Najafi, S. (2013). Use of recycled plastics in wood plastic composites?A review. Waste Management, 33(9), 1898–1905. https://doi.org/10.1016/j.wasman.2013.05.017

    Article  Google Scholar 

  67. Kazemi, Y., Cloutier, A., & Rodrigue, D. (2013). Design analysis of three-layered structural composites based on post-consumer recycled plastics and wood residues. Composites Part a Applied Science and Manufacturing, 53, 1–9. https://doi.org/10.1016/j.compositesa.2013.06.002

    CAS  Article  Google Scholar 

  68. Kerni, L., Singh, S., Patnaik, A., & Kumar, N. (2020). A review on natural fiber reinforced composites. Materials Today Proceedings, 28, 1616–1621. https://doi.org/10.1016/j.matpr.2020.04.851

    CAS  Article  Google Scholar 

  69. Khatri, J. K., & Metri, B. (2016). SWOT-AHP approach for sustainable manufacturing strategy selection: A case of Indian SME. Global Business Review, 17(5), 1211–1226. https://doi.org/10.1177/0972150916656693

    Article  Google Scholar 

  70. Klyosov, A. A. (2007). Wood-plastic composites. Wood-plastic composites. John Wiley & Sons Inc. https://doi.org/10.1002/9780470165935

    Book  Google Scholar 

  71. Kurttila, M., Pesonen, M., Kangas, J., & Kajanus, M. (2000). Utilizing the analytic hierarchy process (AHP) in SWOT analysis?a hybrid method and its application to a forest-certification case. Forest Policy and Economics, 1(1), 41–52. https://doi.org/10.1016/S1389-9341(99)00004-0

    Article  Google Scholar 

  72. Lima, J. M., & Partidario, M. R. (2020). Plurality in sustainability-multipe understandings with a variable geometry. Journal of Cleaner Production, 250, 119474. https://doi.org/10.1016/j.jclepro.2019.119474

    Article  Google Scholar 

  73. Lopez, Y. M., Gonçalves, F. G., Paes, J. B., Gustave, D., Theodoro Nantet, A. C., & Sales, T. J. (2020). Resistance of wood plastic composite produced by compression to termites Nasutitermes corniger (Motsch) and Cryptotermes brevis (Walker.). International Biodeterioration and Biodegradation, 152(March), 104998. https://doi.org/10.1016/j.ibiod.2020.104998

    CAS  Article  Google Scholar 

  74. Machado, J. S., Santos, S., Pinho, F. F. S., Luís, F., Alves, A., Simões, R., & Rodrigues, J. C. (2016). Impact of high moisture conditions on the serviceability performance of wood plastic composite decks. Materials & Design, 103, 122–131. https://doi.org/10.1016/j.matdes.2016.04.030

    Article  Google Scholar 

  75. Mara, V., Haghani, R., & Harryson, P. (2014). Bridge decks of fibre reinforced polymer (FRP): A sustainable solution. Construction and Building Materials, 50, 190–199. https://doi.org/10.1016/j.conbuildmat.2013.09.036

    Article  Google Scholar 

  76. Martins, G., Antunes, F., Mateus, A., & Malça, C. (2017). Optimization of a wood plastic composite for architectural applications. Procedia Manufacturing, 12, 203–220. https://doi.org/10.1016/j.promfg.2017.08.025

    Article  Google Scholar 

  77. Matthews, S., Toghyani, A. E., Ovaska, S.-S., Hyvärinen, M., Tanninen, P., Leminen, V., et al. (2018). Role of moisture on press formed products made of wood plastic composites. Procedia Manufacturing, 17, 1090–1096. https://doi.org/10.1016/j.promfg.2018.10.076

    Article  Google Scholar 

  78. Merrington, A. (2017). Recycling of plastics. In Applied plastics engineering handbook (Second Ed, pp. 167–189). Elsevier. https://doi.org/10.1016/B978-0-323-39040-8.00009-2

  79. Moura, J. M. B. M., Gohr Pinheiro, I., & Carmo, J. L. (2018). Gravimetric composition of the rejects coming from the segregation process of the municipal recyclable wastes. Waste Management, 74, 98–109. https://doi.org/10.1016/j.wasman.2018.01.011

    CAS  Article  Google Scholar 

  80. Mwanza, B. G., & Mbohwa, C. (2017). Drivers to sustainable plastic solid waste recycling: A review. Procedia Manufacturing, 8, 649–656. https://doi.org/10.1016/j.promfg.2017.02.083

    Article  Google Scholar 

  81. Nahuz, M. A. R., Miranda, M. J. de A. C., Ielo, P. K. Y., Pigozzo, R. J. B., & Yojo, T. (2013). Catálogo de madeiras brasileiras para a construção civil. (Intergovernmental Panel on Climate Change, Ed.). São Paulo: IPT - Instituto de Pesquisas Tecnológicas do Estado de São Paulo.

  82. Nazário, G. F., Da Silva, V. C., Rocha, A. H. S., Rodrigues, F. R., Lima, F. P. dos A. (2016). Summary for policymakers. In Intergovernmental panel on climate change (Ed.), Climate change 2013 - The physical science basis (Vol. 01, pp. 1–30). Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.004

  83. Nerkar, M., Kamalakaran, R., Banyopadhyay, S., & Guo, H. (2011). Intrusion molding: Does it affect part properties??: Plastics technology. Plastics technology, 57(12), 26. https://www.ptonline.com/articles/intrusion-molding-does-it-affect-part-properties. Accessed 26 June 2020.

  84. Osita, I., Onyebuchi, I., & Nzekwe, J. (2014). Organization?s stability and productivity: the role of SWOT analysis an acronym for strength, weakness, opportunities and threat. International Journal of Innovative and Applied Research, 2(9), 23–32.

    Google Scholar 

  85. Othman, M. H. (2020). Renewable agricultural fibers as reinforcing fillers in plastics: Mechanical properties of kenaf fiber-polypropylene composites. In S. Hashmi, & I. A. Choudhury (Ed.), Encyclopedia of renewable and sustainable materials (pp. 231–241). Elsevier. https://doi.org/10.1016/B978-0-12-803581-8.11554-1

  86. Pacheco, E. B. A. V., Ronchetti, L. M., & Masanet, E. (2012). An overview of plastic recycling in Rio de Janeiro. Resources, Conservation and Recycling, 60, 140–146. https://doi.org/10.1016/j.resconrec.2011.12.010

    Article  Google Scholar 

  87. Partanen, A., & Carus, M. (2016). Wood and natural fiber composites current trend in consumer goods and automotive parts. Reinforced Plastics, 60(3), 170–173. https://doi.org/10.1016/j.repl.2016.01.004

    Article  Google Scholar 

  88. Pelegrini, M., Gohr Pinheiro, I., & Valle, J. A. B. (2010). Plates made with solid waste from the recycled paper industry. Waste Management, 30(2), 268–273. https://doi.org/10.1016/j.wasman.2009.08.008

    CAS  Article  Google Scholar 

  89. Petchwattana, N., Covavisaruch, S., & Sanetuntikul, J. (2012). Recycling of wood?plastic composites prepared from poly(vinyl chloride) and wood flour. Construction and Building Materials, 28(1), 557–560. https://doi.org/10.1016/j.conbuildmat.2011.08.024

    Article  Google Scholar 

  90. Pulngern, T., Chitsamran, T., Chucheepsakul, S., Rosarpitak, V., Patcharaphun, S., & Sombatsompop, N. (2016). Effect of temperature on mechanical properties and creep responses for wood/PVC composites. Construction and Building Materials, 111, 191–198. https://doi.org/10.1016/j.conbuildmat.2016.02.051

    CAS  Article  Google Scholar 

  91. Ravishankar, B., Nayak, S. K., & Kader, M. A. (2019). Hybrid composites for automotive applications?A review. Journal of Reinforced Plastics and Composites, 38(18), 835–845. https://doi.org/10.1177/0731684419849708

    CAS  Article  Google Scholar 

  92. Reißmann, D., Thrän, D., & Bezama, A. (2018). Techno-economic and environmental suitability criteria of hydrothermal processes for treating biogenic residues: A SWOT analysis approach. Journal of Cleaner Production, 200, 293–304. https://doi.org/10.1016/j.jclepro.2018.07.280

    Article  Google Scholar 

  93. Rezende, C. L., Fraga, J. S., Sessa, J. C., de Souza, G. V. P., Assad, E. D., & Scarano, F. R. (2018). Land use policy as a driver for climate change adaptation: A case in the domain of the Brazilian Atlantic forest. Land Use Policy, 72(January), 563–569. https://doi.org/10.1016/j.landusepol.2018.01.027

    Article  Google Scholar 

  94. Rowell, R. M. (2007). Challenges in biomass-thermoplastic composites. Journal of Polymers and the Environment, 15(4), 229–235. https://doi.org/10.1007/s10924-007-0069-0

    CAS  Article  Google Scholar 

  95. Santos, F. A., Canto, L. B., da Silva, A. L. N., Visconte, L. L. Y., & Pacheco, E. B. A. V. (2020). Processing and properties of plastic lumber. In G. A. Evingür, Ö. Pekcan, & D. S. Achilias (Eds.), Thermosoftening plastics. IntechOpen. https://doi.org/10.5772/intechopen.82819

    Chapter  Google Scholar 

  96. Saraiva, M. B., Ferreira, M. D. P., da Cunha, D. A., Daniel, L. P., Homma, A. K. O., & Pires, G. F. (2020). Forest regeneration in the Brazilian Amazon: Public policies and economic conditions. Journal of Cleaner Production, 269, 122424. https://doi.org/10.1016/j.jclepro.2020.122424

    Article  Google Scholar 

  97. Sathishkumar, T., Naveen, J., & Satheeshkumar, S. (2014). Hybrid fiber reinforced polymer composites ? a review. Journal of Reinforced Plastics and Composites, 33(5), 454–471. https://doi.org/10.1177/0731684413516393

    CAS  Article  Google Scholar 

  98. Satyanarayana, K. G., Guimarães, J. L., & Wypych, F. (2007). Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications. Composites Part A Applied Science and Manufacturing, 38(7), 1694–1709. https://doi.org/10.1016/j.compositesa.2007.02.006

    CAS  Article  Google Scholar 

  99. Schwarzböck, T., Van Eygen, E., Rechberger, H., & Fellner, J. (2017). Determining the amount of waste plastics in the feed of Austrian waste-to-energy facilities. Waste Management & Research, 35(2), 207–216. https://doi.org/10.1177/0734242X16660372

    Article  Google Scholar 

  100. Schwarzkopf, M. J., & Burnard, M. D. (2016). Environmental impacts of traditional and innovative forest-based bioproducts. In A. Kutnar & S. S. Muthu (Eds.), Environmental impacts of traditional and innovative forest-based bioproducts. Springer. https://doi.org/10.1007/978-981-10-0655-5

    Chapter  Google Scholar 

  101. Seker, Ş, & Özgürler, M. (2012). Analysis of the Turkish consumer electronics firm using SWOT-AHP method. Procedia Social and Behavioral Sciences, 58, 1544–1554. https://doi.org/10.1016/j.sbspro.2012.09.1141

    Article  Google Scholar 

  102. Semeralul, H. O. (2009). Advancing the technology development for better quality wood plastic composites: Processability study. University of Ontario. Retrieved from https://ir.library.dc-uoit.ca/xmlui/bitstream/handle/10155/21/thesis_100274324.pdf?sequence=1.

  103. Sheu, J.-B., & Chen, Y. J. (2014). Transportation and economies of scale in recycling low-value materials. Transportation Research Part b: Methodological, 65, 65–76. https://doi.org/10.1016/j.trb.2014.03.008

    Article  Google Scholar 

  104. Singh, N., Hui, D., Singh, R., Ahuja, I. P. S., Feo, L., & Fraternali, F. (2017). Recycling of plastic solid waste: A state of art review and future applications. Composites Part b Engineering, 115, 409–422. https://doi.org/10.1016/j.compositesb.2016.09.013

    CAS  Article  Google Scholar 

  105. Sommerhuber, P. F., Wenker, J. L., Rüter, S., & Krause, A. (2017). Life cycle assessment of wood-plastic composites: Analysing alternative materials and identifying an environmental sound end-of-life option. Resources Conservation and Recycling, 117, 235–248. https://doi.org/10.1016/j.resconrec.2016.10.012

    Article  Google Scholar 

  106. Spear, M. J., Eder, A., & Carus, M. (2015). Wood polymer composites. In Wood composites (pp. 195–249). Elsevier. https://doi.org/10.1016/B978-1-78242-454-3.00010-X

  107. Srivastava, P. K., Kulshreshtha, K., Mohanty, C. S., Pushpangadan, P., & Singh, A. (2005). Stakeholder-based SWOT analysis for successful municipal solid waste management in Lucknow. India. Waste Management, 25(5), 531–537. https://doi.org/10.1016/j.wasman.2004.08.010

    CAS  Article  Google Scholar 

  108. Szulecka, J., & Monges Zalazar, E. (2017). Forest plantations in Paraguay: Historical developments and a critical diagnosis in a SWOT-AHP framework. Land Use Policy, 60, 384–394. https://doi.org/10.1016/j.landusepol.2016.11.001

    Article  Google Scholar 

  109. Taquette, S., & Borges, L. (2020). Pesquisa Qualitativa para Todos. Editora Vozes.

    Google Scholar 

  110. Trulli, E., Ferronato, N., Torretta, V., Piscitelli, M., Masi, S., & Mancini, I. (2018). Sustainable mechanical biological treatment of solid waste in urbanized areas with low recycling rates. Waste Management, 71, 556–564. https://doi.org/10.1016/j.wasman.2017.10.018

    CAS  Article  Google Scholar 

  111. Trumbore, S., Brando, P., & Hartmann, H. (2015). Forest health and global change. Science, 349(6250), 814–818. https://doi.org/10.1126/science.aac6759

    CAS  Article  Google Scholar 

  112. Vandi, L.-J., Chan, C. M., Werker, A., Richardson, D., Laycock, B., & Pratt, S. (2019). Extrusion of wood fibre reinforced poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) biocomposites: Statistical analysis of the effect of processing conditions on mechanical performance. Polymer Degradation and Stability, 159, 1–14. https://doi.org/10.1016/j.polymdegradstab.2018.10.015

    CAS  Article  Google Scholar 

  113. Vedrtnam, A., Kumar, S., & Chaturvedi, S. (2019). Experimental study on mechanical behavior, biodegradability, and resistance to natural weathering and ultraviolet radiation of wood-plastic composites. Composites Part b Engineering, 176(July), 107282. https://doi.org/10.1016/j.compositesb.2019.107282

    CAS  Article  Google Scholar 

  114. Vidal, R., Martínez, P., & Garraín, D. (2009). Life cycle assessment of composite materials made of recycled thermoplastics combined with rice husks and cotton linters. International Journal of Life Cycle Assessment, 14, 73–82. https://doi.org/10.1007/s11367-008-0043-7

    CAS  Article  Google Scholar 

  115. Vogt, D., Karus, M., Ortmann, S., Schmidt, C., & Gahle, C. (2006). Wood-plastic-composites (WPC) Märkte in Nordamerika , Japan und Europa mit Schwerpunkt auf Deutschland Technische Eigenschaften ? Anwendungsgebiete Preise ? Märkte ? Akteure. Hürth.

  116. Wang, L., & He, C. (2019). Thermal and wear behavior of three inorganic fiber-reinforced wood-plastic composites in simulated soil aging conditions. Polymer Testing, 80(September), 106129. https://doi.org/10.1016/j.polymertesting.2019.106129

    CAS  Article  Google Scholar 

  117. Wang, M., Li, Y., Li, M., Wan, L., Miao, L., & Wang, X. (2019). A comparative study on recycling amount and rate of used products under different regulatory scenarios. Journal of Cleaner Production, 235, 1153–1169. https://doi.org/10.1016/j.jclepro.2019.06.320

    Article  Google Scholar 

  118. Zhang, J., Wang, H., Ou, R., & Wang, Q. (2018). The properties of flax fiber reinforced wood flour/high density polyethylene composites. Journal of Forestry Research, 29(2), 533–540. https://doi.org/10.1007/s11676-017-0461-0

    CAS  Article  Google Scholar 

  119. Zhou, Y., Stanchev, P., Katsou, E., Awad, S., & Fan, M. (2019). A circular economy use of recovered sludge cellulose in wood plastic composite production: Recycling and eco-efficiency assessment. Waste Management, 99, 42–48. https://doi.org/10.1016/j.wasman.2019.08.037

    CAS  Article  Google Scholar 

  120. Zimmermann, M. V. G., Turella, T. C., Santana, R. M. C., & Zattera, A. J. (2014). The influence of wood flour particle size and content on the rheological, physical, mechanical and morphological properties of EVA/wood cellular composites. Materials & Design, 57, 660–666. https://doi.org/10.1016/j.matdes.2014.01.010

    CAS  Article  Google Scholar 

  121. Zion Market Research. (2017). Free analysis: wood plastic composites market. https://www.zionmarketresearch.com/market-analysis/wood-plastic-composites-market. Accessed 26 June 2020.

  122. Zong, G., Hao, X., Hao, J., Tang, W., Fang, Y., Ou, R., & Wang, Q. (2020). High-strength, lightweight, co-extruded wood flour-polyvinyl chloride/lumber composites: Effects of wood content in shell layer on mechanical properties, creep resistance, and dimensional stability. Journal of Cleaner Production, 244, 118860. https://doi.org/10.1016/j.jclepro.2019.118860

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Coordination for the Improvement of Higher Education Personnel (CAPES), the National Scientific Research Council (CNPq) and the Research Support Foundation of Rio de Janeiro state (FAPERJ), Brazilian National Agency for Petroleum, Natural Gas and Biofuels (ANP) and Funding Authority for Studies and Projects (FINEP).

Funding

Not applicable.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elen Beatriz Acordi Vasques Pacheco.

Ethics declarations

Conflicts of interest

The authors declared that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, I.A.P.T., Alves, R.V., Guimarães, M.J.d.C. et al. Assessment of plastic lumber production in Brazil as a substitute for natural wood. Environ Dev Sustain (2021). https://doi.org/10.1007/s10668-021-01843-w

Download citation

Keywords

  • Plastic lumber
  • Recycling
  • WPC
  • Composite
  • SWOT
  • Natural wood