Skip to main content

Advertisement

Log in

Evaluation of spatiotemporal dynamics of water storage changes at block level for sustainable water management in Howrah District of West Bengal

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The present study aims to estimate block-wise temporal changes of groundwater storage (GWS) under the terrestrial water storage (TWS) in Howrah District of West Bengal, India, using Catchment Land Surface Model (CLSM) from the Global Land Data Assimilation System (GLDAS-2). It deals with the quantitative investigation of the variability of GWS and TWS of pre-monsoon and post-monsoon season from 2000 to 2014. The application of the geospatial method was carried out for such geo-spatiotemporal analysis to portray the dynamics especially the variability of ground and surface water storage for 15 years using various cartographic and statistical techniques. The present estimation and evaluation criteria include aspects of GWS, TWS, the variations of pre- and post-monsoon season capturing the temporal variations from 2000 to 2014. The result shows that on average a decline in water storage has taken place during the study period in most of the blocks of the study district. However, block-wise spatiotemporal dynamics of water storage changes were considered for analysis and mapping to portray the micro-level scenario for the aim of sustainable planning and management of this unique water resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Alley, W., Healy, R., LaBaugh, J., & Reilly, T (2002a). Flow and storage in groundwater systems. Science, 1985–1990.

  • Alley, W. M., Healy, R. W., LaBaugh, J. W., & Reilly, T. E. (2002b). Flow and storage in groundwater systems. Science, 1895–1990.

  • Andersson, E. (2006). Urban landscapes and sustainable cities. Ecology and Society 11 (1). Retrieve 7th June 2020 from http://www.ecologyandsociety.org/vol11/iss1/art34.

  • Asoka, A. G. T. (2017). The relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nature Geoscience 10, 109–117. https://www.nature.com/articles/ngeo2869.

  • Bhanja, S. N. (2016). Validation of GRACE based groundwater storage anomaly using in situ groundwater level measurements in India. Journal of Hydrology, 543, 729–738.

    Article  Google Scholar 

  • Bhanja, S. N. (2017). Groundwater rejuvenation in parts of India influenced by water-policy change implementation. Scientific Reports, 7, 7453. https://doi.org/10.1038/s41598-017-07058-2

    Article  CAS  Google Scholar 

  • Bhanja, S. N. (2018). Groundwater Storage Variations in India. Groundwater of South Asia (pp. 49–59). Springer.

    Chapter  Google Scholar 

  • Bhanja, S. N., Rodell, M., Li, B., Saha, D., & Mukherjee, A. (2017). Spatio-temporal variability of groundwater storage in India. Journal of Hydrology, 544, 428–437. https://doi.org/10.1016/j.jhydrol.2016.11.052

    Article  Google Scholar 

  • Board, C. G. (2006). Dynamic Groundwater Resources of India (as of March 2004). (Ministry of Water Resources, Government of India).

  • Bollasina, M. A. (2011). Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334(6055), 502–505. https://doi.org/10.1126/science.1204994

    Article  CAS  Google Scholar 

  • Brindha, K. A. (2012). Impact of tanning industries on groundwater quality near a metropolitan city in India. Water Resources Management, 26, 1747–1761.

    Article  Google Scholar 

  • Brindha, K. N. V. (2014). Identification of surface water–groundwater interaction by hydrogeochemical indicators and assessing its suitability for drinking and irrigational purposes in Chennai, southern India. Applied Water Science, 4, 159–174.

    Article  CAS  Google Scholar 

  • Census 1 (2011). Census of India. Ministry of Home Affairs, Government of India, http://censusindia.gov.in/.

  • Central Groundwater Board (2017). Groundwater Year Book of West Bengal. Eastern Region, Kolkata: Ministry of Water Resources, Government of India.

  • CGWB 2 (2011). Annual report 2010–11. Ministry of Water Resources, Government of India. http://cgwb.gov.in/documents/Annual%20Report%202010-11.pdf.

  • Chen, J. L. (2016). Long-term groundwater storage change in Victoria, Australia from satellite gravity and in situ observations. Global and Planetary Change, 139, 56–65.

    Article  Google Scholar 

  • Chinnasamy, P. H. J. (2013). Using remote sensing data to improve groundwater supply. Earth Interactions, 17, 1–7. https://doi.org/10.1175/2012EI000456.1

    Article  Google Scholar 

  • Dasgupta, S. I. (2014). Space-based gravity data analysis for groundwater storage estimation in the Gangetic plain, India. Current Science., 107(5), 832–844.

    Google Scholar 

  • Debbarma, J. (2019). A Spatio-temporal study on fluctuation in pre-monsoon and post-monsoon groundwater level in Tripura, North-east India. International Journal of Advanced Scientific Research and Management, 4(2), 39–48.

    Google Scholar 

  • Douglas, E. M. (2006). Changes in moisture and energy fluxes due to agricultural land use and irrigation in the Indian Monsoon Belt. Geophysical Research Letters, 33, L14403. https://doi.org/10.1029/2006GL026550

    Article  Google Scholar 

  • Famiglietti, J. S. (2014). The global groundwater crisis. Nature Climate Change, 4, 945. https://doi.org/10.1038/nclimate2425

    Article  Google Scholar 

  • Gadgil, S. A. (2006). The Indian monsoon, GDP, and agriculture. Economic and Political Weekly, 41, 4887–4895.

    Google Scholar 

  • Hazra, A. S. (2013). Indian summer monsoon drought 2009: Role of aerosol and cloud microphysics. Atmospheric Science Letters, 14(3), 181–186. https://doi.org/10.1002/asl2.437

    Article  Google Scholar 

  • He, C., Shi, P., Xie, D., & Zhao, Y. (2010). Improving the normalized difference built-up index to map urban built-up areas using a semiautomatic segmentation approach. Remote Sensing Letters, 1(4), 213–221.

    Article  Google Scholar 

  • Huang, J. P. (2016). Mapping groundwater storage variations with GRACE: A case study in Alberta, Canada. Hydrogeology Journal, 24, 1663–1680.

    Article  Google Scholar 

  • Jia, B., Cai, X., Zhao, F., Liu, J., Chen, S., Luo, X. & Xu, J. (2020). Potential future changes of terrestrial water storage based on climate projections by ensemble model simulations. Advances in Water Resources, 142, 103635.

  • Joodaki, G. J. (2014). Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Water Resources Research, 50, 2679–2692. https://doi.org/10.1002/2013WR014633

    Article  Google Scholar 

  • Joshi, S. K., Gupta, S., Sinha, R., Densmore, A. L., Rai, S. P., Shekhar, S. & van Dijk, W. M. (2021) Strongly heterogeneous patterns of groundwater depletion in northwestern India. Journal of Hydrology, 598, 126492.

  • Kumar, R. S. (2005). Water resources of India. Current Science, 89, 794–811.

    Google Scholar 

  • Kumar, R., Singh, R. D., & Sharma, K. D. (2005). Water resources of India. Current Science, 89, 794–811.

    Google Scholar 

  • Lakshmanan, E. K. R. (2003). Major ion chemistry and identification of hydrogeochemical processes of groundwater in a part of Kancheepuram district, Tamil Nadu, India. Environmental Geosciences, 10(4), 157–166.

    Article  Google Scholar 

  • Lobell, D. B. M. (2012). Extreme heat effects on wheat senescence in India. Nature Climate Change, 2, 186–189.

    Article  Google Scholar 

  • Long, D. C. (2016). Have GRACE satellites overestimated groundwater depletion in the Northwest India Aquifer? Scientific Report, 6, 24398. https://doi.org/10.1038/srep24398

    Article  CAS  Google Scholar 

  • Lundholm, J. T. (2010). MINI-REVIEW: Habitat analogs for reconciliation ecology in urban and industrial environments. Journal of Applied Ecology, 47(5), 966–975.

    Article  Google Scholar 

  • Mall, R. K. (2006). Water resources and climate change: An Indian perspective. Current Science, 90, 1610–1626.

    Google Scholar 

  • Michael, H. A. (2009). Controls on groundwater flow in the Bengal Basin of India and Bangladesh: Regional modeling analysis. Hydrogeology Journal, 17(7), 1561–1577.

    Article  CAS  Google Scholar 

  • Mukherjee, A., & Fryar, A. E. (2008). Deeper groundwater chemistry and geochemical modeling of the arsenic affected the western Bengal basin, West Bengal, India. Applied Geochemistry, 23, 863–894.

    Article  CAS  Google Scholar 

  • Panda, D. K. (2016). Spatiotemporal evolution of water storage changes in India from the updated GRACE derived gravity records. Water Resources Research, 51, 135–149. https://doi.org/10.1002/2015WR017797

    Article  Google Scholar 

  • Panda, D. K., & Wahr, J. (2017). Spatiotemporal evolution of water storage changes in India from the updated GRACE-derived gravity records. Water Resources Research, 52, 135–149. https://doi.org/10.1002/2015WR017797

    Article  Google Scholar 

  • Patra, S. (2018). Impacts of urbanization on land use /cover changes and its probable implications on local climate and groundwater level. Journal of Urban Management, 7, 70–84. https://doi.org/10.1016/j.jum.2018.04.006

    Article  Google Scholar 

  • Postel S (1993). Water in Crisis: A Guide to the World’s Freshwater Resources (ed. Gleick, P. H.). Oxford University Press, pp 56–66.

  • Prasood, S. P., Mukesh, M. V., Rani, V. R., Sajinkumar, K. S., & Thrivikramji, K. P. (2021). Urbanization and its effects on water resources: Scenario of a tropical river basin in South India (p. 100556). Society and Environment.

    Google Scholar 

  • Rahman, S. (2002). Groundwater quality of Oman (pp. 122–128). Groundwater Quality.

    Google Scholar 

  • Rajmohan, N. (2006). Hydrogeochemistry and its relation to groundwater level fluctuation in the Palar and Cheyyar river basins, southern India. Hydrological Processes, 20, 2415–2427.

    Article  CAS  Google Scholar 

  • Richey, A. S. H. (2015). Quantifying renewable groundwater stress with GRACE. Water Resources Research., 51, 5217–5238.

    Article  Google Scholar 

  • Richey, A. S., Thomas, B. F., Lo, M. H., Reager, J. T., Famiglietti, J. S., Voss, K., Swenson, S., & Rodell, M. (2015). Quantifying renewable groundwater stress with GRACE. Water Resources Research, 51, 5217–5238. https://doi.org/10.1002/2015WR017349

    Article  Google Scholar 

  • Rodell, M. C. (2007). Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeology Journal, 15, 159–166.

    Article  CAS  Google Scholar 

  • Rodell, M. V. (2009). Satellite-based estimates of groundwater depletion in India. Nature, 460, 999–1002.

    Article  CAS  Google Scholar 

  • Rui, H., & Beaudoing, H. (2018). README Document for NASA GLDAS Version 2 Data Products. Goddart Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA.

  • Saha, D., Dhar, Y. R., & Sikdar, P. K. (2008). Geochemical evolution of groundwater in the Pleistocene aquifers of south Ganga plain, Bihar. Journal Geological Society of India, 71(4), 473.

    CAS  Google Scholar 

  • Sahoo, S. (2013). Monitoring urban land use land cover change by Multi-Temporal remote sensing information in Howrah city, India. The International Journal of Earth Sciences, 1(5), 1–6.

    Google Scholar 

  • Sahu, P. M. (2013). Impacts on groundwater recharge areas of megacity pumping: Analysis of potential contamination of Kolkata, India, water supply. Hydrological Sciences Journal, 58(6), 1340–1360.

    Article  Google Scholar 

  • Sahu, P., & Sikdar, P. K. (2008). Hydrochemical framework of the aquifer in and around East Calcutta Wetlands, West Bengal, India. Environmental Geology., 55(4), 823–835.

    Article  CAS  Google Scholar 

  • Sahu, P., & Sikdar, P. K. (2011). Groundwater potential zoning of a peri-urban wetland of south Bengal Basin, India. Environmental Monitoring and Assessment, 174, 119–134.

    Article  CAS  Google Scholar 

  • Scanlon, B. R. (2012a). Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resources Research, 48, W04520. https://doi.org/10.1029/2011WR011312

    Article  Google Scholar 

  • Scanlon, B. R. (2012b). Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proceedings of the National Academy of Sciences of the United States of America, 109(24), 9320–9325.

    Article  CAS  Google Scholar 

  • Scanlon, B. R. (2016). Global evaluation of new GRACE mascon products for hydrologic applications. Water Resources Research, 52, 9412–9429.

    Article  Google Scholar 

  • Scanlon, B., Jolly, I., Sophocleous, M., & Zhang, L. (2007). Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality. Water Resources Research, 43, W03437.

    Article  Google Scholar 

  • Schewe, J. E. (2013). Multi-model assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences of the United States of America, 111(9), 3245–3250. https://doi.org/10.1073/pnas.1222460110

    Article  CAS  Google Scholar 

  • Shah, T., Molden, D., Sakthivadivel, R., Seckler, D. (2000). The Global Groundwater Situation: Overview of Opportunities and Challenges. Colombo, Sri Lanka: International Water Management Institute.

  • Shah, T. (2009). Taming the anarchy: groundwater governance in South Asia. Washington, DC,: RFF Press, p 310.

  • Shamsudduha, M. T. (2012). Monitoring groundwater storage changes in the Bengal Basin: Validation of GRACE measurements. Water Resources Research, 48, W02508. https://doi.org/10.1029/2011WR010993

    Article  Google Scholar 

  • Siebert, S., Burke, J., Faures, J., Frenken, K., Hoogeveen, J., Doll, P., & Portmann, F. (2010). Groundwater use for irrigation—A global inventory. Hydrology and Earth System Sciences, pp 1863–1880.

  • Sikdar, P. K. (2000). Geology of the Quaternary aquifers of the twin city of Calcutta-Howrah. The Journal of the Geological Society of India, 56(8), 169–186.

    Google Scholar 

  • Sikdar, P. K. (2013). Migration of arsenic in multi-aquifer system of Bengal Basin: Analysis via numerical modeling. Environmental Earth Scence, 70(4), 1863–1879.

    Article  CAS  Google Scholar 

  • Sikdar, P. K., Sarkar, S. S., & Palchoudhury, S. (2001). Geochemical evolution of groundwater in the Quaternary Aquifers of Calcutta and Howrah, India. Journal of Asian Earth Sciences, 19, 579–594.

    Article  Google Scholar 

  • Sikdar, P. K., & Sahu, P. (2009). Understanding wetland sub-surface hydrology using geologic and isotopic signatures. Hydrology and Earth System Sciences, 13, 1313–1323.

    Article  CAS  Google Scholar 

  • Sinha, D., & Syed, T. H. (2017). Characterizing drought in India using GRACE observations of terrestrial water storage deficit. The Journal of Hydrometeorology, 18, 381–396. https://doi.org/10.1175/JHM-D-16-0047.1

    Article  Google Scholar 

  • Stow, D. A. (2002). Sensitivity of multitemporal NOAA AVHRR data of an urbanizing region to land-use/land-cover changes and misregistration. Remote Sensing of Environment, 80(2), 297–307.

    Article  Google Scholar 

  • Sukumaran D., S. C. (2015). Groundwater Quality Index of Howrah, the Heritage City of West Bengal, India. Applied Ecology and Environmental Sciences, 3 (1), 5–10. https://doi.org/10.12691/aees-3-1-2.

  • Suvarna, T. M. (2012). Spatial distribution of groundwater quality in some selected parts of Pune City, Maharashtra, India Using GIS. Current World Environment, 7(2), 281–286.

    Article  Google Scholar 

  • Swenson, S.P.-F. (2006). A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois. Geophysical Research Letters, 33, L16401. https://doi.org/10.1029/2006GL026962

    Article  Google Scholar 

  • Swenson, S. J. (2008). Estimating profile soil moisture and groundwater storage variations in the southern Great Plains using GRACE satellite gravimetric and Oklahoma Mesonet soil moisture data. Water Resources Research, 44, W01413. https://doi.org/10.1029/2007WR006057

    Article  Google Scholar 

  • Tangdamrongsub, N., Hwang, C., Borak, J. S., Prabnakorn, S., & Han, J. (2021). Optimizing GRACE/GRACE-FO data and a priori hydrological knowledge for improved global terrestial water storage component estimates. Journal of Hydrology, 598, 126463.

  • Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., Konikow, L., Green, T. R., Chen, J., Taniguchi, M., Bierkens, M. F. P., MacDonald, A., Fan, Y., Maxwell, R. M., Yechieli, Y., Shamsudduha, M, Hiscock, K, Yeh P. J.-F., Holman, I, & Treidel, H. (2012). Ground water and climate change. Nature Climate Change., 3, 322–329.

    Article  Google Scholar 

  • Taylor, R. G. S. B. (2013). Groundwater and Climate Change. Nature Climate Change, 3, 322–329, https://www.nature.com/articles/nclimate1744.

  • Tiwari, V. M. (2009). Dwindling groundwater resources in northern India, from satellite gravity observations. Geophysical Research Letters, 36, L18401.

    Article  Google Scholar 

  • Tiwari, V. M. (2011). Land water storage variation over Southern India from space gravimetry. Current Science, 101(4), 336–340.

    Google Scholar 

  • UNESCO-WWAP. (2009). Climate change and water—An overview from the world water development report 3: Water in a changing world, special report. UNESCO Publishing.

    Google Scholar 

  • Voss, K. A. (2013). Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resources Research, 49, 904–914. https://doi.org/10.1002/wrcr.20078

    Article  Google Scholar 

  • Wada, Y. L. (2010). Global depletion of groundwater resources. Geophysical Research Letters, 37, L20402. https://doi.org/10.1029/2010GL044571

    Article  Google Scholar 

  • Webster, P. J. (1998). Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research., 103, 14451–14510.

    Article  Google Scholar 

  • Wirsing, R. G. (2013). International Conflict Over Water Resources in Himalayan Asia. N. Y.: Macmillan.

  • Zektser, I., & Everett Lorne, G. (2004). Groundwater Resources of the World and Their Use. Paris, France, p.346: UNESCO IHP-VI Series on Groundwater No. 6; UNESCO.

  • Zha, Y. G. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583–594.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Directorate of Irrigation and Waterways, Government of West Bengal, India for providing necessary support for current research work. The authors also thank NASA and Regional Director, CGWB for providing the necessary data for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satiprasad Sahoo.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, B.K., Sahoo, S. Evaluation of spatiotemporal dynamics of water storage changes at block level for sustainable water management in Howrah District of West Bengal. Environ Dev Sustain 24, 9519–9568 (2022). https://doi.org/10.1007/s10668-021-01838-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01838-7

Keywords

Profiles

  1. Biraj Kanti Mondal