Skip to main content

Advertisement

Log in

Comparison of multi-influence factor, weight of evidence and frequency ratio techniques to evaluate groundwater potential zones of basaltic aquifer systems

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Groundwater is the largest available reservoir of freshwater. But the rapid increase in the population and urbanisation, has led to over exploitation of groundwater which imposed tremendous pressure on global groundwater resources. Because of the hidden and dynamic nature of groundwater, it requires appropriate quantification for the formulation of groundwater planning and management strategies. The present study evaluates the efficacy of geospatial technology based Multi Influence Factor (MIF), Weight of Evidence (WofE) and Frequency Ratio (FR) technique to evaluate groundwater potential using a case study of basaltic terrain. The thematic layers influencing the groundwater occurrence viz. rainfall, slope, geomorphology, soil type, land use, drainage density, lineament density, and elevation were prepared using satellite images, hydrologic, hydrogeologic and relevant field data. Based on the conceptual frameworks of MIF, WofE and FR techniques these thematic layers and their features were assigned with appropriate weight and then integrated in the ArcGIS platform for the generation of aggregated raster layer which portray the groundwater potential zones. The results of validation showed that the groundwater potential delineated using MIF technique has a prediction accuracy of 81.94%, followed by WofE technique (76.19%) and FR techniques (71.43%). It is concluded that for evaluation of groundwater potential, the MIF technique is most reliable, followed by the WofE technique. The evaluated groundwater potential zones are useful as a scientific guide to identify the suitable location of wells and recharge structure in a cost-efficient way and also for the development of structured and pragmatic groundwater management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig.12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Achu, A. L., Thomas, J., & Reghunath, R. (2020). Multi-criteria decision analysis for delineation of groundwater potential zones in a tropical river basin using remote sensing, GIS and analytical hierarchy process (AHP). Groundwater for Sustainable Development, 10, 100365.

    Google Scholar 

  • Adimalla, N., & Taloor, A. K. (2020). Hydrogeochemical investigation of groundwater quality in the hard rock terrain of South India using Geographic Information System (GIS) and groundwater quality index (GWQI) techniques. Groundwater for Sustainable Development, 10, 100288.

    Google Scholar 

  • Akgun, A., Dag, S., & Bulut, F. (2008). Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environmental Geology, 54(6), 1127–1143.

    Google Scholar 

  • Aksever, F., Davraz, A., & Karaguzel, R. (2015). Groundwater balance estimation and sustainability in the Sandıklı Basin (Afyonkarahisar/Turkey). Journal of Earth System Science, 124(4), 783–798.

    Google Scholar 

  • Armaş, I. (2012). Weights of evidence method for landslide susceptibility mapping Prahova Subcarpathians, Romania. Natural Hazards, 60(3), 937–950.

    Google Scholar 

  • Arulbalaji, P., Padmalal, D., & Sreelash, K. (2019). GIS and AHP techniques based delineation of groundwater potential zones: a case study from southern Western Ghats. India. Scientific Reports, 9(1), 1–17.

    CAS  Google Scholar 

  • Asoka, A., Gleeson, T., Wada, Y., & Mishra, V. (2017). Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nature Geoscience, 10(2), 109–117.

    CAS  Google Scholar 

  • Bear, J., Cheng, A. H. D., Sorek, S., Ouazar, D., & Herrera, I. (1999). Seawater intrusion in coastal aquifers: concepts, methods and practices (Vol. 14). Springer Science & Business Media.

  • CGWB (2014) Groundwater Information Nashik District Maharashtra. Central Ground Water Board, 1–17. http://cgwb.gov.in/district_profile/maharashtra/nashik.pdf. Accessed 4 September 2020

  • CGWB (2017) Dynamic groundwater resources of India. Central Ground Water Board, G. o. I. Ministry of Jal Shakti. http://cgwb.gov.in/GW-Assessment/GWRA-2017-National-Compilation.pdf. Accessed 7 September 2020.

  • Cao, C., Xu, P., Wang, Y., Chen, J., Zheng, L., & Niu, C. (2016). Flash flood hazard susceptibility mapping using frequency ratio and statistical index methods in coalmine subsidence areas. Sustainability, 8(9), 948.

    Google Scholar 

  • Chowdhury, A., Jha, M. K., Chowdary, V. M., & Mal, B. C. (2009). Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur district, West Bengal. India. International Journal of Remote Sensing, 30(1), 231–250.

    Google Scholar 

  • Corsini, A., Cervi, F., & Ronchetti, F. (2009). Weight of evidence and artificial neural networks for potential groundwater spring mapping: an application to the Mt. Modino area (Northern Apennines, Italy). Geomorphology, 111(1–2), 79–87.

    Google Scholar 

  • Das, B., Pal, S. C., Malik, S., & Chakrabortty, R. (2019). Modeling groundwater potential zones of Puruliya district, West Bengal, India using remote sensing and GIS techniques. Geology, Ecology, and Landscapes, 3(3), 223–237.

    Google Scholar 

  • Das, S., & Pardeshi, S. D. (2018). Integration of different influencing factors in GIS to delineate groundwater potential areas using IF and FR techniques: a study of Pravara basin, Maharashtra. India. Applied Water Science, 8(7), 197.

    Google Scholar 

  • Devi, P. S., Srinivasulu, S., & Raju, K. K. (2001). Hydrogeomorphological and groundwater prospects of the Pageru river basin by using remote sensing data. Environmental Geology, 40(9), 1088–1094.

    CAS  Google Scholar 

  • Fashae, O. A., Tijani, M. N., Talabi, A. O., & Adedeji, O. I. (2014). Delineation of groundwater potential zones in the crystalline basement terrain of SW-Nigeria: an integrated GIS and remote sensing approach. Applied Water Science, 4(1), 19–38.

    CAS  Google Scholar 

  • GSI. (2001). District Resources Map. Geological Survey of India Publications Calcutta.

    Google Scholar 

  • Ganapuram, S., Kumar, G. V., Krishna, I. M., Kahya, E., & Demirel, M. C. (2009). Mapping of groundwater potential zones in the Musi basin using remote sensing data and GIS. Advances in Engineering Software, 40(7), 506–518.

    Google Scholar 

  • Gayen, A., & Saha, S. (2017). Application of weights-of-evidence (WoE) and evidential belief function (EBF) models for the delineation of soil erosion vulnerable zones: a study on Pathro river basin, Jharkhand. India. Modeling Earth Systems and Environment, 3(3), 1123–1139.

    Google Scholar 

  • Ghasemi, A., Saghafian, B., & Golian, S. (2017). System dynamics approach for simulating water resources of an urban water system with emphasis on sustainability of groundwater. Environmental Earth Sciences, 76(18), 637.

    Google Scholar 

  • Ghorbani Nejad, S., Falah, F., Daneshfar, M., Haghizadeh, A., & Rahmati, O. (2017). Delineation of groundwater potential zones using remote sensing and GIS-based data-driven models. Geocarto International, 32(2), 167–187.

    Google Scholar 

  • Ghude, S. D., Jena, C., Chate, D. M., Beig, G., Pfister, G. G., Kumar, R., & Ramanathan, V. (2014). Reductions in India’s crop yield due to ozone. Geophysical Research Letters, 41(15), 5685–5691.

    Google Scholar 

  • Gnanachandrasamy, G., Zhou, Y., Bagyaraj, M., Venkatramanan, S., Ramkumar, T., & Wang, S. (2018). Remote sensing and GIS based groundwater potential zone mapping in Ariyalur District, Tamil Nadu. Journal of the Geological Society of India, 92(4), 484–490.

    Google Scholar 

  • Gumma, M. K., & Pavelic, P. (2013). Mapping of groundwater potential zones across Ghana using remote sensing, geographic information systems, and spatial modeling. Environmental Monitoring and Assessment, 185(4), 3561–3579.

    Google Scholar 

  • Gupta, M., & Srivastava, P. K. (2010). Integrating GIS and remote sensing for identification of groundwater potential zones in the hilly terrain of Pavagarh, Gujarat. India. Water International, 35(2), 233–245.

    Google Scholar 

  • Gurdak, J. J. (2017). Groundwater: Climate-induced pumping. Nature Geoscience, 10(2), 71–71.

    CAS  Google Scholar 

  • Hembram, T. K., Paul, G. C., & Saha, S. (2019). Comparative analysis between morphometry and geo-environmental factor based soil erosion risk assessment using weight of evidence model: A study on jainti river basin. Eastern India. Environmental Processes, 6(4), 883–913.

    Google Scholar 

  • Hong, H., Ilia, I., Tsangaratos, P., Chen, W., & Xu, C. (2017). A hybrid fuzzy weight of evidence method in landslide susceptibility analysis on the Wuyuan area, China. Geomorphology, 290, 1–16.

    Google Scholar 

  • Hong, H., Tsangaratos, P., Ilia, I., Liu, J., Zhu, A. X., & Chen, W. (2018). Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China. Science of the Total Environment, 625, 575–588.

    CAS  Google Scholar 

  • Jenifer, M. A., & Jha, M. K. (2017). Comparison of Analytic Hierarchy Process, Catastrophe and Entropy techniques for evaluating groundwater prospect of hard-rock aquifer systems. Journal of Hydrology, 548, 605–624.

    Google Scholar 

  • Jha, M. K., Chowdhury, A., Chowdary, V. M., & Peiffer, S. (2007). Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints. Water Resources Management, 21(2), 427–467.

    Google Scholar 

  • Katpatal, Y. B., Pophare, A. M., & Lamsoge, B. R. (2014). A groundwater flow model for overexploited basaltic aquifer and Bazada formation in India. Environmental Earth Sciences, 72(11), 4413–4425.

    CAS  Google Scholar 

  • Kaur, L., Rishi, M. S., Singh, G., & Thakur, S. N. (2020). Groundwater potential assessment of an alluvial aquifer in Yamuna sub-basin (Panipat region) using remote sensing and GIS techniques in conjunction with analytical hierarchy process (AHP) and catastrophe theory (CT). Ecological Indicators, 110, 105850.

    Google Scholar 

  • Kayastha, P., Dhital, M. R., & De Smedt, F. (2012). Landslide susceptibility mapping using the weight of evidence method in the Tinau watershed. Nepal. Natural Hazards, 63(2), 479–498.

    Google Scholar 

  • Kim, J. C., Jung, H. S., & Lee, S. (2019). Spatial mapping of the groundwater potential of the geum river basin using ensemble models based on remote sensing images. Remote Sensing, 11(19), 2285.

    Google Scholar 

  • Krishnamurthy, J., Venkatesa Kumar, N., Jayaraman, V., & Manivel, M. (1996). An approach to demarcate ground water potential zones through remote sensing and a geographical information system. International Journal of Remote Sensing, 17(10), 1867–1884.

    Google Scholar 

  • Kumar, D. P. K., Gopinath, G., & Seralathan, P. (2007). Application of remote sensing and GIS for the demarcation of groundwater potential zones of a river basin in Kerala, southwest coast of India. International Journal of Remote Sensing, 28(24), 5583–5601.

    Google Scholar 

  • Lee, G. F., & Jones-Lee, A. (2004). Appropriate use of chemical information in a best professional judgment triad weight-of-evidence evaluation of sediment quality. Aquatic Ecosystem Health & Management, 7(3), 351–356.

    CAS  Google Scholar 

  • Lee, S., Kim, Y. S., & Oh, H. J. (2012). Application of a weights-of-evidence method and GIS to regional groundwater productivity potential mapping. Journal of Environmental Management, 96(1), 91–105.

    Google Scholar 

  • Lee, S., & Pradhan, B. (2007). Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 4(1), 33–41.

    Google Scholar 

  • Machiwal, D., Jha, M. K., & Mal, B. C. (2011). Assessment of groundwater potential in a semi-arid region of India using remote sensing, GIS and MCDM techniques. Water Resources Management, 25(5), 1359–1386.

    Google Scholar 

  • Magesh, N. S., Chandrasekar, N., & Soundranayagam, J. P. (2012). Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing. GIS and MIF Techniques. Geoscience Frontiers, 3(2), 189–196.

    Google Scholar 

  • Mahmoud, S. H. (2014). Delineation of potential sites for groundwater recharge using a GIS-based decision support system. Environmental Earth Sciences, 72(9), 3429–3442.

    Google Scholar 

  • Mohammady, M., Pourghasemi, H. R., & Amiri, M. (2019). Assessment of land subsidence susceptibility in Semnan plain (Iran): A comparison of support vector machine and weights of evidence data mining algorithms. Natural Hazards, 99(2), 951–971.

    Google Scholar 

  • Murthy, K. S. R. (2000). Ground water potential in a semi-arid region of Andhra Pradesh-a geographical information system approach. International Journal of Remote Sensing, 21(9), 1867–1884.

    Google Scholar 

  • Oh, H. J., Kim, Y. S., Choi, J. K., Park, E., & Lee, S. (2011). GIS mapping of regional probabilistic groundwater potential in the area of Pohang City. Korea. Journal of Hydrology, 399(3–4), 158–172.

    Google Scholar 

  • Palmer, M. A., Reidy Liermann, C. A., Nilsson, C., Flörke, M., Alcamo, J., Lake, P. S., & Bond, N. (2008). Climate change and the world’s river basins: anticipating management options. Frontiers in Ecology and the Environment, 6(2), 81–89.

    Google Scholar 

  • Pande, C. B., Moharir, K. N., Singh, S. K., & Varade, A. M. (2019). An integrated approach to delineate the groundwater potential zones in Devdari watershed area of Akola district, Maharashtra, Central India. Environment, Development and Sustainability, 1–21.

  • Parisi, A., Monno, V., & Fidelibus, M. D. (2018). Cascading vulnerability scenarios in the management of groundwater depletion and salinization in semi-arid areas. International Journal of Disaster Risk Reduction, 30, 292–305.

    Google Scholar 

  • Pinto, D., Shrestha, S., Babel, M. S., & Ninsawat, S. (2017). Delineation of groundwater potential zones in the Comoro watershed, Timor Leste using GIS, remote sensing and analytic hierarchy process (AHP) technique. Applied Water Science, 7(1), 503–519.

    CAS  Google Scholar 

  • Raju, R. S., Raju, G. S., & Rajasekhar, M. (2019). Identification of groundwater potential zones in Mandavi River basin, Andhra Pradesh, India using remote sensing, GIS and MIF techniques. HydroResearch, 2, 1–11.

    Google Scholar 

  • Rane, N., & Jayaraj, G. K. (2021). Stratigraphic modeling and hydraulic characterization of a typical basaltic aquifer system in the Kadva river basin, Nashik. India. Model. Earth Syst. Environ., 7, 293–306.

    Google Scholar 

  • Razandi, Y., Pourghasemi, H. R., Neisani, N. S., & Rahmati, O. (2015). Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Science Informatics, 8(4), 867–883.

    Google Scholar 

  • Roy, A., Keesari, T., Sinha, U. K., & Sabarathinam, C. (2019). Delineating groundwater prospect zones in a region with extreme climatic conditions using GIS and remote sensing techniques: A case study from central India. Journal of Earth System Science, 128(8), 1–19.

    Google Scholar 

  • Sahoo, S., Jha, M. K., Kumar, N., & Chowdary, V. M. (2015). Evaluation of GIS-based multicriteria decision analysis and probabilistic modeling for exploring groundwater prospects. Environmental Earth Sciences, 74(3), 2223–2246.

    Google Scholar 

  • Sahoo, S., Munusamy, S. B., Dhar, A., Kar, A., & Ram, P. (2017). Appraising the accuracy of multi-class frequency ratio and weights of evidence method for delineation of regional groundwater potential zones in canal command system. Water Resources Management, 31(14), 4399–4413.

    Google Scholar 

  • Sanderson, H., Dyer, S. D., Price, B. B., Nielsen, A. M., van Compernolle, R., Selby, M., Stanton, K., Evans, A., Ciarlo, M., & Sedlak, R. (2006). Occurrence and weight-of-evidence risk assessment of alkyl sulfates, alkyl ethoxysulfates, and linear alkylbenzene sulfonates (LAS) in river water and sediments. Science of the Total Environment, 368(2–3), 695–712.

    CAS  Google Scholar 

  • Selvakumar, S., Chandrasekar, N., Kaliraj, S., & Magesh, N. S. (2018). Salinization of shallow aquifer in the Karamaniyar river basin, Southern India. Environment, Development and Sustainability, 20(3), 1255–1273.

    Google Scholar 

  • Shah, T. (2009). Climate change and groundwater: India’s opportunities for mitigation and adaptation. Environmental Research Letters, 4(3), 035005.

    Google Scholar 

  • Shah, T. (2010). Taming the anarchy: Groundwater governance in South Asia. England: Routledge.

    Google Scholar 

  • Shahid, S., Nath, S., & Roy, J. (2000). Groundwater potential modelling in a soft rock area using a GIS. International Journal of Remote Sensing, 21(9), 1919–1924.

    Google Scholar 

  • Shahinuzzaman, M., Haque, M. N., & Shahid, S. (2021). Delineation of groundwater potential zones using a parsimonious concept based on catastrophe theory and analytical hierarchy process. Hydrogeology Journal, 1–26.

  • Singh, A. (2014). Groundwater resources management through the applications of simulation modeling: a review. Science of the Total Environment, 499, 414–423.

    CAS  Google Scholar 

  • Singh, L. K., Jha, M. K., & Chowdary, V. M. (2018). Assessing the accuracy of GIS-based Multi-Criteria Decision Analysis approaches for mapping groundwater potential. Ecological Indicators, 91, 24–37.

    Google Scholar 

  • Srinivasa Rao, Y., & Jugran, D. K. (2003). Delineation of groundwater potential zones and zones of groundwater quality suitable for domestic purposes using remote sensing and GIS. Hydrological Sciences Journal, 48(5), 821–833.

    Google Scholar 

  • Tahmassebipoor, N., Rahmati, O., Noormohamadi, F., & Lee, S. (2016). Spatial analysis of groundwater potential using weights-of-evidence and evidential belief function models and remote sensing. Arabian Journal of Geosciences, 9(1), 79.

    Google Scholar 

  • Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2014). Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512, 332–343.

    Google Scholar 

  • Thapa, R., Gupta, S., Gupta, A., Reddy, D. V., & Kaur, H. (2018). Use of geospatial technology for delineating groundwater potential zones with an emphasis on water-table analysis in Dwarka River basin, Birbhum. India. Hydrogeology Journal, 26(3), 899–922.

    Google Scholar 

  • Tolche, A. D. (2021). Groundwater potential mapping using geospatial techniques: a case study of Dhungeta-Ramis sub-basin, Ethiopia. Geology, Ecology, and Landscapes, 5(1), 65–80.

    Google Scholar 

  • Tsanis, I. K., & Apostolaki, M. G. (2009). Estimating groundwater withdrawal in poorly gauged agricultural basins. Water Resources Management, 23(6), 1097–1123.

    Google Scholar 

  • Vasanthavigar, M., Srinivasamoorthy, K., Vijayaragavan, K., Ganthi, R. R., Chidambaram, S., Anandhan, P., Manivannan, R., & Vasudevan, S. (2010). Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu. India. Environmental Monitoring and Assessment, 171(1–4), 595–609.

    CAS  Google Scholar 

  • Voudouris, K. S. (2006). Groundwater balance and safe yield of the coastal aquifer system in NEastern Korinthia. Greece. Applied Geography, 26(3–4), 291–311.

    Google Scholar 

  • Wada, Y., Van Beek, L. P., Van Kempen, C. M., Reckman, J. W., Vasak, S., & Bierkens, M. F. (2010). Global depletion of groundwater resources. Geophysical research letters. https://doi.org/10.1029/2010GL044571

    Article  Google Scholar 

  • Wagh, V. M., Panaskar, D. B., Muley, A. A., & Mukate, S. V. (2017). Groundwater suitability evaluation by CCME WQI model for Kadava river basin, Nashik, Maharashtra. India. Modeling Earth Systems and Environment, 3(2), 557–565.

    Google Scholar 

  • Waikar, M. L., & Nilawar, A. P. (2014). Identification of groundwater potential zone using remote sensing and GIS technique. International Journal of Innovative Research in Science, Engineering and Technology, 3(5), 12163–12174.

    Google Scholar 

  • Xu, C., Xu, X., Dai, F., Xiao, J., Tan, X., & Yuan, R. (2012). Landslide hazard mapping using GIS and weight of evidence model in Qingshui river watershed of 2008 Wenchuan earthquake struck region. Journal of Earth Science, 23(1), 97–120.

    Google Scholar 

  • Yeh, H. F., Cheng, Y. S., Lin, H. I., & Lee, C. H. (2016). Mapping groundwater recharge potential zone using a GIS approach in Hualian River. Taiwan. Sustainable Environment Research, 26(1), 33–43.

    CAS  Google Scholar 

  • Yeh, H. F., Lee, C. H., Hsu, K. C., & Chang, P. H. (2009). GIS for the assessment of the groundwater recharge potential zone. Environmental Geology, 58(1), 185–195.

    Google Scholar 

  • Yesilnacar, M. I., Sahinkaya, E., Naz, M., & Ozkaya, B. (2008). Neural network prediction of nitrate in groundwater of Harran Plain. Turkey. Environmental Geology, 56(1), 19–25.

    CAS  Google Scholar 

  • Zhu, Q., & Abdelkareem, M. (2021). Mapping groundwater potential zones using a knowledge-driven approach and GIS analysis. Water, 13(5), 579.

    Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin L. Rane.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rane, N.L., Jayaraj, G.K. Comparison of multi-influence factor, weight of evidence and frequency ratio techniques to evaluate groundwater potential zones of basaltic aquifer systems. Environ Dev Sustain 24, 2315–2344 (2022). https://doi.org/10.1007/s10668-021-01535-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01535-5

Keywords

Navigation