Skip to main content

Advertisement

Log in

A mathematical modelling framework for quantifying production of biofuel from waste banana

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Wide-scale implementations or industrial-scale productions of biofuels from food/fruit waste are insufficient. One of the major reasons of wider implementations is lack of confidence on potential outcomes and subsequent monetary benefit. A mathematical model can provide estimations of potential biofuel generation capability under different input conditions. This paper presents a mathematical modelling framework for the estimation of bioethanol production potential from waste/rotten banana. A simple mathematical formulation comprised of three contributing factors such as shaking hour, temperature and water content is proposed. The factors were derived based on an earlier experimental study on production of bioethanol from waste banana. Results from the proposed mathematical model were compared with the experimental measurements. It is found that the proposed model is capable to estimate potential bioethanol productions from waste banana with very good accuracy achieving a coefficient of correlation of 0.995. Standard errors of the model’s estimations are RMSE = 0.08, MAE = 0.06 and RAE = 0.01. Finally, to facilitate proper estimations of benefit–cost ratio, a mathematical framework is proposed. For industry-scale implementations of biofuel generation, such modelling framework is useful for the decision makers on deciding optimum input parameters through optimised energy consumption, which will ultimately render monetary benefits from such production. Similar mathematical framework can be adopted for such biofuel production from other fruit/food waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amenaghawon, A. N., Anyalewechi, C. L., Okieimen, C. O., & Kusuma, H. S. (2021). Biomass pyrolysis technologies for value-added products: A state-of-the-art review. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-021-01276-5

    Article  Google Scholar 

  • Bakky, A. A., Hoque, M. R., & Islam, M. S. (2021). Production of biofuel from cassava,. Journal of Environmental Science and Natural Resources, 12(1–2), 171–174.

    Article  Google Scholar 

  • Barata, J. (2008). Modelling of biofuel droplets dispersion and evaporation. Renewable Energy, 33(4), 769–779.

    Article  CAS  Google Scholar 

  • Bees, M. A., & Croze, O. A. (2014). Mathematics for streamlined biofuel production from unicellular algae. Biofuels, 5(1), 53–65.

    Article  CAS  Google Scholar 

  • Clarke, W. P., Radnidge, P., Lai, T. E., Jensen, P. D., & Hardin, M. T. (2008). Digestion of waste bananas to generate energy in Australia. Waste Management, 28, 527–533.

    Article  CAS  Google Scholar 

  • Delkhosh, F., & Sadjadi, S. J. (2020). A robust optimization model for a biofuel supply chain under demand uncertainty. International Journal of Energy and Environmental Engineering, 11, 229–245. https://doi.org/10.1007/s40095-019-00329-w

    Article  CAS  Google Scholar 

  • Eleren, S. C., Altınçekiç, S. Ö., & Altınçekiç, E. (2018). Biofuel potential of fruit juice industry waste. ASCE Journal of Hazardous, Toxic, and Radioactive Waste, 22(4), 05018002.

    Article  Google Scholar 

  • FAO. (2020). Food and agriculture organization of the united nations, Retrieved 15 October, 2020 from http://www.fao.org/economic/est/est-commodities/bananas/en/

  • Gosavi, P., Chaudhary, Y., & Durve-Gupta, A. (2017). Production of biofuel from fruits and vegetable wastes. European Journal of Biotechnology and Bioscience, 5(3), 69–73.

    Google Scholar 

  • Hansson, A., Fridahl, M., Haikola, S., Yanda, P., Pauline, N., & Mabhuye, E. (2020). Preconditions for bioenergy with carbon capture and storage (BECCS) in sub-Saharan Africa: The case of Tanzania. Environment, Development and Sustainability, 22, 6851–6875. https://doi.org/10.1007/s10668-019-00517-y

    Article  Google Scholar 

  • Hossain, A. B. M. S., Ahmed, S. A., Alshammari, A. M., Adnan, F. M. A., Annuar, M. S. M., Mustafa, H., & Hammad, N. (2011). Bioethanol fuel production from rotten banana as an environmental waste management and sustainable energy. African Journal of Microbiology Research, 5(6), 586–598. https://doi.org/10.5897/AJMR10.231

    Article  CAS  Google Scholar 

  • Isah, S., & Ozbay, G. (2020). Valorization of food loss and wastes: Feedstocks for biofuels and valuable chemicals. Frontiers in Sustainable Food Systems, 4, 82. https://doi.org/10.3389/fsufs.2020.00082

    Article  Google Scholar 

  • Jahid, M., Gupta, A., & Sharma, D. K. (2018). Production of bioethanol from fruit wastes (banana, papaya, pineapple and mango peels) under milder conditions. Journal of Bioprocessing & Biotechniques, 8(3), 1000327.

    Article  Google Scholar 

  • Karmee, S. K. (2016). Liquid biofuels from food waste: Current trends, prospect and limitation. Renewable and Sustainable Energy Reviews, 53, 945–953.

    Article  CAS  Google Scholar 

  • Leow, S., Shoener, B. D., Li, Y., et al. (2018). A unified modeling framework to advance biofuel production from microalgae. Environmental Science & Technology. https://doi.org/10.1021/acs.est.8b03663

    Article  Google Scholar 

  • Nazari, M. T., Mazutti, J., Basso, L. G., Colla, L. M., & Brandli, B. (2020). Biofuels and their connections with the sustainable development goals: A bibliometric and systematic review. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-020-01110-4

    Article  Google Scholar 

  • Nimlos, M. & Crowley, M. (2011). Computational modeling in lignocellulosic biofuel production, American chemical society, Illustrated Edition, ISBN 978-0841225718.

  • Razaghi, A., Karthikeyan, O. P., Hao, H. T. N., & Heimann, K. (2016). Hydrolysis treatments of fruit and vegetable waste for production of biofuel precursors. Bioresource Technology, 217, 100–103.

    Article  CAS  Google Scholar 

  • Silva, M. G., Nobre, L. R. P., Santiago, L. E., Deus, M. S., Jesus, A. A., Oliveira, J. A., & Souza, D. F. (2018). Mathematical modeling and simulation of biodiesel production in a semibatch bubble reactor. Energy and Fuels, 32(9), 9614–9623. https://doi.org/10.1021/acs.energyfuels.8b02196

    Article  CAS  Google Scholar 

  • Solano, D. M. V., Maldonado, J. M. A., & Arenas, A. A. (2019). Biodigestion: Alternative use of vegetable matter for obtaining biofuel in the province of Ocaña Colombia. Journal of Physics: Conference Series, 1257, 012021. https://doi.org/10.1088/1742-6596/1257/1/012021

    Article  CAS  Google Scholar 

  • Stamenković, O. S., Siliveru, K., Veljko, V. B., Banković-Ilić, I. B., Tasić, M. B., Ciampitti, I. A., Đalović, I. G., Mitrović, P. M., Sikora, V. Š, & Prasad, P. V. (2020). Production of biofuels from sorghum. Renewable and Sustainable Energy Reviews, 124, 109769.

    Article  Google Scholar 

  • Tiwari, S., Jadhav, S. K., Sharma, M., & Tiwari, K. L. (2014). Fermentation of waste fruits for bioethanol production. Asian Journal of Biological Sciences, 7(1), 30–34. https://doi.org/10.3923/ajbs.2014.30.34

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monzur Alam Imteaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imteaz, M.A., Hossain, A.B.M.S. & Bayatvarkeshi, M. A mathematical modelling framework for quantifying production of biofuel from waste banana. Environ Dev Sustain 24, 2010–2021 (2022). https://doi.org/10.1007/s10668-021-01517-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01517-7

Keywords

Navigation