Skip to main content

Life cycle assessment and water footprint scarcity of yogurt

Abstract

The dairy sector presents various environmental impacts and a transition towards more ecological processes is required. This might be achieved through life cycle assessment, a tool used to evaluate the environmental impacts of a product throughout its life cycle. This paper aims to assess the environmental performance from cradle-to-grave of a dairy product, 1 kg of yogurt. To model the life cycle inventory and life cycle impact assessment phases, the SimaPro software and the IMPACT 2002 + method are used, respectively. Water scarcity is assessed using the Available WAter REmaining (AWARE) consensus methodology. The results show that the milk production accounts for the highest impacts due to animal crops, whether imported or cultivated. The latter crops require fertilizers, which contribute by 72.3% to global warming, 72.5% to terrestrial acidification/nutrification, and 64.4% to aquatic eutrophication. Imported crops contribute to all impact categories except for non-carcinogens and terrestrial/aquatic ecotoxicity, for which a positive contribution on the environment is observed due to the use of organic fertilizers for the crops production. Environmental impacts are also imposed on the other categories due to crops production and fuel consumption. It is shown that the use of organic fertilizers and reduction of the distance of importation could be two potential ways to decrease the environmental load for some impact categories. For the water scarcity, the water consumed to produce 1 kg of yogurt is 285 L and the feed production stage contributes to 97.71% of the total water scarcity (2.00E + 01 m3 world eq).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Abbas, I., Chaaban, J. K., Al-Rabaa, A. R., & Shaar, A. A. (2017). Solid waste management in Lebanon: Challenges and recommendations. Journal of Environment and Waste Management, 4(3), 235–243

    Google Scholar 

  2. AWARE Factors. (2018). Country/region aware factors. Retrieved September 10, 2020, from http://www.wulca-waterlca.org/aware.html.

  3. Bai, X., Ren, X., Khanna, N. Z., Zhou, N., & Hu, M. (2018). Comprehensive water footprint assessment of the dairy industry chain based on ISO 14046: A case study in China. Resources, Conservation and Recycling, 132, 369–375. https://doi.org/10.1016/j.resconrec.2017.07.021

    Article  Google Scholar 

  4. Berlin, J. (2002). Environmental life cycle assessment of semi-hard cheese. International Dairy Journal, 12, 939–953. https://doi.org/10.1016/S0958-6946(02)00112-7

    Article  Google Scholar 

  5. Björklund, A. E. (2002). Survey of approaches to improve reliability in LCA. The International Journal of Life Cycle Assessment, 7(2), 64–72. https://doi.org/10.1007/BF02978849

    Article  Google Scholar 

  6. Boulay, A. M., Bare, J., De Camillis, C., Döll, P., Gassert, F., Gerten, D., & Pfister, S. (2015). Consensus building on the development of a stress-based indicator for LCA-based impact assessment of water consumption: outcome of the expert workshops. The International Journal of Life Cycle Assessment, 20(5), 577–583. https://doi.org/10.1007/s11367-015-0869-8

    Article  CAS  Google Scholar 

  7. Boulay, A. M., Bare, J., Benini, L., Berger, M., Lathuillière, M. J., Manzardo, A., & Pfister, S. (2018). The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). The International Journal of Life Cycle Assessment, 23(2), 368–378. https://doi.org/10.1007/s11367-017-1333-8

    Article  Google Scholar 

  8. Djekic, I., Miocinovic, J., Tomasevic, I., Smigic, N., & Tomic, N. (2014). Environmental life-cycle assessment of various dairy products. Journal of cleaner production, 68, 64–72. https://doi.org/10.1016/j.jclepro.2013.12.054

    Article  CAS  Google Scholar 

  9. Ecoinvent, (2016). Retrieved January 13, 2019, from http://www.ecoinvent.org

  10. Eide, M. H. (2002). Life cycle assessment (LCA) of industrial milk production. The International Journal of Life Cycle Assessment, 7(2), 115–126. https://doi.org/10.1007/BF02978855

    Article  CAS  Google Scholar 

  11. El Bachawati, M., Manneh, R., Belarbi, R., Dandres, T., Nassab, C., & El Zakhem, H. (2016). Cradle-to-gate life cycle assessment of traditional gravel ballasted, white reflective, and vegetative roofs: A Lebanese case study. Journal of Cleaner Production, 137, 833–842

    Article  Google Scholar 

  12. European Commission, (2018). Product environmental footprint category rules for dairy products. Retrieved January 13, 2019, from https://ec.europa.eu/commission/index_en

  13. European Life Cycle Database. (2006). Retrieved January 16, 2019, from http://eplca.jrc.ec.europa.eu/ELCD3/

  14. Fantin, V., Buttol, P., Pergreffi, R., & Masoni, P. (2012). Life cycle assessment of Italian high quality milk production. A comparison with an EPD study. Journal of cleaner production, 28, 150–159. https://doi.org/10.1016/j.jclepro.2011.10.017

    Article  CAS  Google Scholar 

  15. Finnegan, W., Yan, M., Holden, N. M., & Goggins, J. (2018). A review of environmental life cycle assessment studies examining cheese production. The International Journal of Life Cycle Assessment, 23(9), 1773–1787

    Article  Google Scholar 

  16. Goedkoop, M., Oele, M., Leijting, J., Ponsioen, T., Meijer, E., (2013). Introduction to LCA with SimaPro. Retrieved February 7, 2019, from https://www.pre-sustainability.com/simapro.

  17. González-García, S., Castanheira, É. G., Dias, A. C., & Arroja, L. (2013a). Environmental life cycle assessment of a dairy product: the yoghurt. The International Journal of Life Cycle Assessment, 18(4), 796–811. https://doi.org/10.1007/s11367-012-0522-8

    Article  CAS  Google Scholar 

  18. González-García, S., Castanheira, É. G., Dias, A. C., & Arroja, L. (2013b). Using life cycle assessment methodology to assess UHT milk production in Portugal. Science of the Total Environment, 442, 225–234. https://doi.org/10.1016/j.scitotenv.2012.10.035

    Article  CAS  Google Scholar 

  19. Google, n.d. Map of Bekaa Governate. Retrieved from https://www.google.com/maps

  20. Hodan, W. M., & Barnard, W. R. (2004). Evaluating the contribution of PM2. 5 precursor gases and re-entrained road emissions to mobile source PM2. 5 particulate matter emissions. MACTEC Federal Programs, Research Triangle Park, NC.

  21. IDF. (2015). A common carbon footprint approach for the dairy. The IDF Guide to standard life cycle assessment methodology.

    Google Scholar 

  22. International Organization for Standardization (ISO), 2006a. Environmental Management-Life Cycle Assessment - Principles and Framework 14040.

  23. International Organization for Standardization (ISO), 2006b. Environmental Management-Life Cycle Assessment - Requirements and Guidelines 14044.

  24. ISO. (2006). ISO 14040: Environmental Management-Life Cycle Assessment -Principles and Framework. International Organization for Standardization.

    Google Scholar 

  25. Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., & Rosenbaum, R. (2003). IMPACT 2002+: A New life cycle impact assessment methodology. The international journal of life cycle assessment, 8(6), 324–330. https://doi.org/10.1007/BF02978505

    Article  Google Scholar 

  26. Khalil, S. A., (2010). Effect of ionizing radiation on the properties of prepared plastic/starch blends and their applications as biodegradable materials. Retrieved January 18, 2019, from https://inis.iaea.org/collection/NCLCollectionStore/_Public/43/081/43081194.pdf?r=1&r=1

  27. Koura, J., Manneh, R., Belarbi, R., El Khoury, V., & El Bachawati, M. (2020). Comparative cradle to grave environmental life cycle assessment of traditional and extensive vegetative roofs: An application for the Lebanese context. The International Journal of Life Cycle Assessment, 25(3), 423–442. https://doi.org/10.1007/s11367-019-01700-z

    Article  Google Scholar 

  28. Maurice, B., Frischknecht, R., Coelho-Schwirtz, V., & Hungerbühler, K. (2000). Uncertainty analysis in life cycle inventory. Application to the production of electricity with French coal power plants. Journal of Cleaner Production, 8(2), 95–108

    Article  Google Scholar 

  29. Meneses, M., Pasqualino, J., & Castells, F. (2012). Environmental assessment of the milk life cycle: The effect of packaging selection and the variability of milk production data. Journal of Environmental Management, 107, 76–83. https://doi.org/10.1016/j.jenvman.2012.04.019

    Article  CAS  Google Scholar 

  30. Mikhael, M., Saadeh, L. (2016). Lebanese dairy sector. Retrieved June 30, 2018, from http://blog.blominvestbank.com/wp-content/uploads/2016/05/Lebanese-Dairy-Sector2.pdf

  31. Munir, M. T., Yu, W., & Young, B. R. (2014). Can exergy be a useful tool for the dairy industry?. In Computer Aided Chemical Engineering (Vol. 33, pp. 1129–1134). Elsevier.

  32. National Food Safety Database. (2011). Retrieved February 19, 2019, from https://www.fbd.org/wp content/uploads/2011/06/Dairy-food-storage.pdf.

  33. Nielsen, P. H., Nielsen, A. M., Weidema, B. P., Dalgaard, R., Halberg, N. (2003) LCA food Database. Retrieved February 19, 2019, from http://www.lcafood.dk (accessed June 2018)

  34. OECD FAO. (2015). Dairy, OECD-FAO Agricultural Outlook 2015. OECD Publishing.

    Book  Google Scholar 

  35. Owusu-Sekyere, E., Jordaan, H., & Chouchane, H. (2017). Evaluation of water footprint and economic water productivities of dairy products of South Africa. Ecological Indicators, 83, 32–40. https://doi.org/10.1016/j.jclepro.2016.08.032

    Article  Google Scholar 

  36. Pfister, S., Koehler, A., & Hellweg, S. (2009). Assessing the environmental impacts of freshwater consumption in LCA. Environmental Science & Technology, 43, 4098–4104. https://doi.org/10.1021/es802423e

    Article  CAS  Google Scholar 

  37. Saba, S., El Bachawati, M., & Malek, M. (2020). Cradle to grave Life cycle assessment of Lebanese biomass briquettes. Journal of Cleaner Production, 253, 119851. https://doi.org/10.1016/j.jclepro.2019.119851

    Article  Google Scholar 

  38. Saleem, M., Iqbal, J., & Shah, M. H. (2014). Non-carcinogenic and carcinogenic health risk assessment of selected metals in soil around a natural water reservoir, Pakistan. Ecotoxicology and Environmental Safety, 108, 42–51. https://doi.org/10.1016/j.ecoenv.2014.06.017

    Article  CAS  Google Scholar 

  39. Santos Jr., H. C. M., Maranduba, H. L., de Almeida Neto, J. A., Rodrigues, L. B., (2017). Life cycle assessment of cheese production process in a small-sized dairy industry in Brazil. E.S.P.R 24, 3470e3482https://doi.org/10.1007/s11356-016-8084-0

  40. Tannous, S., Manneh, R., Harajli, H., & El Zakhem, H. (2018). Comparative cradle-to-grave life cycle assessment of traditional grid-connected and solar stand-alone street light systems: A case study for rural areas in Lebanon. Journal of Cleaner Production, 186, 963–977. https://doi.org/10.1016/j.jclepro.2018.03.155

    Article  Google Scholar 

  41. Thoma, G., Jolliet, O., & Wang, Y. (2013). A biophysical approach to allocation of life cycle environmental burdens for fluid milk supply chain analysis. International Dairy Journal, 31, S41–S49. https://doi.org/10.1016/j.idairyj.2012.08.012

    Article  Google Scholar 

  42. Üçtuğ, F. G., Atluğkoyun, A. İ, & İnaltekin, M. (2019). Environmental life cycle assessment of yoghurt supply to consumer in Turkey. Journal of Cleaner Production, 215, 1103–1111. https://doi.org/10.1016/j.jclepro.2019.01.127

    Article  Google Scholar 

  43. United Nations. (2017). World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100. Retrieved January 20, 2019, from https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html

  44. U.S. Life Cycle Inventory Database. (2012). National Renewable Energy Laboratory. Retrieved November 8, 2019, from https://www.lcacommons.gov/nrel/search.

  45. Vasilaki, V., Katsou, E., Ponsa, S., & Colon, J. (2016). Water and carbon footprint of selected dairy products: A case study in Catalonia. Journal of Cleaner Production, 139, 504–516. https://doi.org/10.1016/j.jclepro.2016.08.032

    Article  Google Scholar 

  46. Wang, Y., Thoma, G., Kim, D., & Burek, J. (2016). Life cycle environmental assessment of yogurt production and consumption in the USA. Journal of Animal Science, 94(5), 271–271. https://doi.org/10.2527/jam2016-0569

    Article  Google Scholar 

  47. Weidema, B. P., & Wesnaes, M. S. (1996). Data quality management for life cycle inventories—an example of using data quality indicators. Journal of cleaner production, 4(3–4), 167–174. https://doi.org/10.1016/S0959-6526(96)00043-1

    Article  Google Scholar 

  48. Weiss, F., & Leip, A. (2012). Greenhouse gas emissions from the EU livestock sector: a life cycle assessment carried out with the CAPRI model. Agriculture, Ecosystems & Environment, 149, 124–134. https://doi.org/10.1016/j.agee.2011.12.015

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the collaboration of Mr. Camille Skaff, CEO of Skaffarm, and would like to thank him for providing the data sheets and the specifications regarding the yogurt.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rima Manneh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hayek, J., El Bachawati, M. & Manneh, R. Life cycle assessment and water footprint scarcity of yogurt. Environ Dev Sustain 23, 18362–18393 (2021). https://doi.org/10.1007/s10668-021-01445-6

Download citation

Keywords

  • Life cycle assessment
  • Dairy products
  • Food production
  • Water scarcity
  • Sustainability