Skip to main content

Advertisement

Log in

Analysis of indicators of climate extremes and projection of groundwater recharge in the northern part of the Rio de Janeiro state, Brazil

  • Original paper
  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Climate change can affect directly the hydrological cycle and influence groundwater availability due to the direct or indirect impact on recharge and discharge processes. The present investigation focuses on groundwater recharge processes in a fluvial-deltaic aquifer in the northern part of the Rio de Janeiro state (Brazil), a region that relies on groundwater resources and where meteorological data indicate a shift from tropical humid climatic conditions to semiarid. The main objective is to understand how groundwater resources respond to the consequences of climate change on groundwater recharge, in order to improve groundwater management practices and guarantee quantitative and qualitative good status. Climate models’ data and projections were used as a tool to provide a better understanding of how climate change can modify the dynamics in the studied groundwater system. The present climate indices for extreme temperature and precipitation (1961–1990) were examined in order to establish the current climatology for the study area, and the Thornthwaite−Mather hydrometeorological balance (TMHB) was used to calculate inputs to the aquifer. Projections for annual rainfall and air temperature for the period 2041–2070 obtained from Eta5km_HadGEM2-ES outputs for the Intergovernmental Panel on Climate Change scenarios RCP4.5 and RCP8.5 were used to estimate recharge to the aquifer using the hydrological code Visual Balan v2.0. Results revealed a tendency to air temperature increase and decrease in precipitation rate for the period of study. Consequently, there was a reduction of recharge in both IPCC scenarios used for the estimation, indicating a decrease in the groundwater resources stored in the region. These results place new challenges to guarantee sustainable groundwater management and the achievement of new aquifer system equilibrium to adapt to climate change impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agência Nacional de Águas. (2016). Conjuntura dos recursos hídricos no Brasil: informe 2016. Brasília.

  • Albuquerque CG (2013) Recarga de Aquífero em Aluvião do Semiárido: estudo de caso em pesqueira. Dissertation, Federal University of Pernambuco

  • Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., Tagipour, A., Rupa Kumar, K., Revadekar, J., Griffiths, G., Vincent, L., Stephenson, D. B., Burn, J., Aguilar, E., Brunet, M., … Vazquez-Aguirre, J. L. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, 111(D5), 1–22. https://doi.org/10.1029/2005JD006290

    Article  Google Scholar 

  • Almeida, C. T., Oliveira-Júnior, J. F., Delgado, R. C., Cubo, P., & Ramos, M. C. (2018). Spatiotemporal rainfall and temperature trends throughout the Brazilian Legal Amazon, 1973–2013. International Journal of Climatology, 37(4), 2013–2026. https://doi.org/10.1002/joc.4831

    Article  Google Scholar 

  • Amanambu, A. C., Obarein, O. A., Mossa, J., Li, L., Ayeni, S. S., Balogun, O., Oyebamiji, A., & Ochege, F. U. (2020). Groundwater system and climate change: Present status and future considerations. Journal of Hydrology, 589, 125163. https://doi.org/10.1016/j.jhydrol.2020.125163

    Article  Google Scholar 

  • Baez-Gonzales, A. D., Torres-Meza, M. J., Royo-Marques, M. H., & Kiniry, J. R. (2018). Climate variability and trends in climate extremes in the priority conservation area El Tokio and adjacent areas in northeastern Mexico. Weather and Climate Extremes, 22, 36–47. https://doi.org/10.1016/j.wace.2018.10.001

    Article  Google Scholar 

  • Balasubramanian, A (2017). Indicators of Global Climate Change. https://doi.org/10.13140/RG.2.2.11485.41444.

  • Balocchi, F., Flores, N., Neary, D., White, D., Silberstein, R., & Arellano, P. (2020). The effect of the ‘Las Maquinas’ wildfire of 2017 on the hydrologic balance of a high conservation value Hualo (Nothofagus glauca (Phil.) Krasser) forest in central Chile. Forest Ecology and Management, 477, 118482. https://doi.org/10.1016/j.foreco.2020.118482

    Article  Google Scholar 

  • Bernardes, R.S. (2005). Condutividade hidráulica de três solos da região Norte Fluminense. Dissertation, Northern Fluminense Darcy Ribeiro State University

  • Brasiliense, C.S. (2016). Vórtice Ciclônico Híbrido embebido na ZCAS associado a um caso de chuva intensa na Bacia do Rio Paraíba do Sul. Dissertation, Federal University of Rio de Janeiro

  • Bredehoeft, J. D. (2002). The water Budget Myth Revisited: Why Hydrogeologists Model. Groundwater, 40(4), 340–345. https://doi.org/10.1111/j.1745-6584.2002.tb02511.x

    Article  CAS  Google Scholar 

  • Caetano, L.C. (2000). Água subterrânea no Município de Campos dos Goytacazes (RJBRASIL): uma opção para o abastecimento. Dissertation, State University of Campinas. 163p.

  • Capucci, E. (2003). Água subterrânea na Baixada Campista. In: Simpósio de Hidrogeologia do Sudeste, 1, 2003. Petrópolis: Associação Brasileira de Águas Subterrâneas.

  • Carrard, N., Foster, T., & Willets, J. (2019). Groundwater as a source of drinking water in southeast Asia and the Pacific: a multi-country review of current reliance and resource concerns. Water, 11(8), 1605. https://doi.org/10.3390/w11081605

    Article  Google Scholar 

  • Chaplot, V. (2007). Water and soil resources response to rising levels of atmospheric CO2 concentration and to changes in precipitation and air temperature. Journal of Hydrology, 337, 159–171. https://doi.org/10.1016/j.jhydrol.2007.01.026

    Article  Google Scholar 

  • Chang, M., Dereczynski, C., Freitas, M. A. V., & Cho, S. C. (2014). Climate change index: a proposed methodology for assessing susceptibility to future climatic extremes. American Journal of Climate Change, 3, 326–337. https://doi.org/10.4236/ajcc.2014.33029

    Article  Google Scholar 

  • Chou, S. C., Lyra, A., Mourão, C., Dereczynski, C. P., Pilotto, I., Gomes, J., Bustamante, J., Tavares, P., Silva, A., Rodrigues, D., Campos, D., Chagas, D., Sueiro, G., Siqueira, G., & Marengo, J. (2014a). Assessment of climate change over South America under RCP 4.5 and 8.5 Downscaling scenarios. American Journal of Climate Change, 3, 512–527

    Article  Google Scholar 

  • Chou, S. C., Lyra, A., Mourão, C., Dereczynski, C. P., Pilotto, I., Gomes, J., Bustamante, J., Tavares, P., Silva, A., Rodrigues, D., Campos, D., Chagas, D., Sueiro, G., Siqueira, G., Nobre, P., & Marengo, J. (2014b). Evaluation of the Eta Simulations nested in Three Global Climate Models. American Journal of Climate Change, 3, 438–454

    Article  Google Scholar 

  • Chrispim ZMP (2016) Análise da vulnerabilidade e caracterização hidrogeoquímica dos aquíferos livres rasos da parte emersa da bacia sedimentar de Campos. PhD Thesis, 320p. Northern Fluminense Darcy Ribeiro State University, Campos dos Goytacazes.

  • Coelho, V. H. R., Montenegro, S., Almeida, C. N., Silva, B. B., Oliveira, L. M., Gusmão, A. C. V., Freitas, E. S., & Montenegro, A. A. A. (2017). Alluvial groundwater recharge estimation in semi-arid environment using remotely sensed data. Journal of Hydrology, 548, 1–15. https://doi.org/10.1016/j.jhydrol.2017.02.054

    Article  Google Scholar 

  • Correia, L.C. (2020). Aspectos Hidrogeológicos da Bacia Sedimentar de Campos. PhD Thesis. 181p. Northern Fluminense Darcy Ribeiro State University, Campos dos Goytacazes.

  • Costa, A. C. S., Nanni, M. R., & Jeske, E. (1997). Determinação da umidade na capacidade de campo e ponto de murchamento permanente por diferentes metodologias. Revista Unimar, 19(3), 827–844

    Google Scholar 

  • Costa, R. L., Baptista, G. M. M., Gomes, H. B., Silva, F. D. S., da Rocha Júnior, R. L., Salvador, M. A., & Herdies, D. L. (2020). Analysis of climate extremes indices over northeast Brazil from 1961 to 2014. Weather and Climate Extremes, 28, 100254. https://doi.org/10.1016/j.wace.2020.100254,2020

    Article  Google Scholar 

  • Companhia de Pesquisa de Recursos Minerais (2001) Geologia do Estado do Rio de Janeiro: texto explicativo do mapa geológico do Estado do Rio de Janeiro. Brasília: CPRM. 2nd edition

  • Deng, W., Wei, G., Zhao, J., & Zeng, T. (2019). Anthropogenic effects on tropical oceanic climate change and variability: An insight from the South China Sea over the past 2000 years. Quaternary Science Reviews, 206, 56–64. https://doi.org/10.1016/j.quascirev.2018.12.027

    Article  Google Scholar 

  • Dile YT, Tekleab S, Ayana EK, Solomon GG, Worqlul, AW, Bayabil HK, Yohannes TY, Seifu AT, Daggupati P, Karlberg L, Srinivasan R (2018) Advances in water resources research in the Upper Blue Nile basin and the way forward: A review. 560:407–423. https://doi.org/https://doi.org/10.1016/j.jhydrol.2018.03.042

  • Dragoni W, Sukhija B S (2008). Climate change and groundwater: a short review. Geological Society, London, Special Publications, 288, 1–12, https://doi.org/10.1144/SP288.1

  • Epting, J., Michel, A., Affolter, A., & Huggenberger, P. (2021). Climate change effects on groundwater recharge and temperatures in Swiss alluvial aquifers. Journal of Hydrology X, 11, 100071. https://doi.org/10.1016/j.hydroa.2020.100071

    Article  Google Scholar 

  • Fan, M., & Shibata, H. (2015). Simulation of watershed hydrology and stream water quality under land use and climate change scenarios in Teshio River watershed, northern Japan. Ecological Indicators, 50, 79–89. https://doi.org/10.1016/j.ecolind.2014.11.003

    Article  CAS  Google Scholar 

  • Fillipini, M., Stumpp, C., Nijenhuis, I., Richnow, H. H., & Gargini, A. (2015). Evaluation of aquifer recharge and vulnerability in a aluvial lowland using environmental tracers. Journal of Hydrology, 529, 1657–1668

    Article  CAS  Google Scholar 

  • Fontana, A., Nascimento, G. B., Anjos, L. H. C., Pereira, M. G., & Ebeling, A. G. (2004). Matéria orgânica em solos de Tabuleiros na região norte fluminense (RJ). Floresta e Ambiente, 8, 114–119

    Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Prentice-Hall.

  • Fundação COPPETEC. (2013). Elaboração do plano estadual de recursos hídricos do Estado do Rio de Janeiro. INEA.

  • Gemitzi, A., Ajami, H., & Richnow, H. (2017). Developing empirical monthly groundwater recharge equations based on modeling and remote sensing data—Modeling future groundwater recharge to predict potential climate change impacts. Journal of Hydrology, 546, 1–13. https://doi.org/10.1016/j.jhydrol.2017.01.005

    Article  CAS  Google Scholar 

  • Gharbia, A. A., Smullen, T., Gill, L., Johnston, P., & Pilla, F. (2018). Spatially distributed potential evapotranspiration modeling and climate projections. Science of Total Environment, 633, 571–592. https://doi.org/10.1016/j.scitotenv.2018.03.208

    Article  CAS  Google Scholar 

  • Gomes, L. C., Bianchi, F. J. J. A., Cardoso, I. A., Schulte, R. P. O., Fernandes, R. B. A., & Fernandes-Filho, E. I. (2021). Disentangling the historic and future impacts of land use changes and climate variability on the hydrology of a mountain region in Brazil. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2020.125650

  • Green, T.R., Taniguchi, M., Kooi, H., Gurdak, J.J., Allen, D.M., Hiscock, K.M., Treidel, H., Aureli, A. (2011) Beneath the surface of global change: impacts of climate change on groundwater. Lincoln: USDA-ARS

  • Gruza, G., Rankova, E., Razuvaev, V., & Bulygina, O. (1999). Indicators of climate change for the Russian Federation. Climatic Change, 42, 219–242. https://doi.org/10.1023/A:1005480719118

    Article  Google Scholar 

  • Hasan, E., Tarhule, A., Kirstetter, P., Race, C., & Hong, Y. (2018). Runoff sensitivity to climate change in the Nile River Basin. Journal of Hidrology, 561, 312–321. https://doi.org/10.1016/j.jhydrol.2018.04.004

    Article  Google Scholar 

  • Hayat, H., Akbar, T. A., Tahir, A. A., Hassan, Q. K., Dewan, A., & Irshad, M. (2019). Simulating current and future river-flows in the Karakoram and Himalayan regions of Pakistan using snowmelt-runoff model and RCP scenarios. Water, 11(4), 761. https://doi.org/10.3390/w11040761

    Article  Google Scholar 

  • Healy, R. W. (2010). Estimating groundwater recharge. Cambridge University Press.

  • Healy R. W., Cook, P. G. (2002) Using groundwater levels to estimate recharge. Hydrogeology Journal 10 (1):91–109

  • Hirata, R., & Conicelli, B. P. (2012). Groundwater resources in Brazil: a review of possible impacts caused by climate change. Anais da Academia Brasileira de Ciências, 84(2), 297–312. https://doi.org/10.1590/S0001-37652012005000037

    Article  Google Scholar 

  • Hohner, A. K., Rhoades, C. C., Wilkerson, P., & Rosario-Ortiz, F. L. (2019). Wildfires alter forest watersheds and threaten drinking water quality. Accounts of Chemical Research, 52, 1234–1244. https://doi.org/10.1021/acs.accounts.8b00670

    Article  CAS  Google Scholar 

  • Hu, K., Awange, J. L., Khandu, F. E., Goncalves, R. M., & Fleming, K. (2017). Hydrogeological characterization of groundwater over Brazil using remotely sensed and model products. Science of total environment, 599–600, 372–386. https://doi.org/10.1016/j.scitotenv.2017.04.188

    Article  CAS  Google Scholar 

  • Hund, S. V., Allen, D. M., Morillas, L., & Johnson, M. S. (2018). Groundwater recharge indicator as tool for decision makers to increase socio-hydrological resilience to seasonal drought. Journal of Hydrology, 563, 1119–1134. https://doi.org/10.1016/j.jhydrol.2018.05.069

    Article  Google Scholar 

  • Hung, Vu. V., & Merkel, B. J. (2019). Estimating Groundwater recharge for Hanoi Vietnam. Science of Total Environment, 651, 1047–1057. https://doi.org/10.1016/j.scitotenv.2018.09.225

    Article  CAS  Google Scholar 

  • Instituto Brasileiro de Geografia e Estatística (2015) Pesquisa de Informações Básicas Municipais. http://www.ibge.gov.br/home/estatistica/economia/perfilmunic. Acessed 18 June 2017

  • Instituto Nacional de Meteorologia. (2009). Normais Climatológicas do Brasil 1961–1990. Brasília.

  • Intergovernmental Panel on Climate Change – IPCC (2014) Climate Change 2013: The Physical Science Basis – Working Group II Contribution to the IPCC Fifth Assessment Report. https://doi.org/10.1017/CBO9781107415324.029

  • Islam, S., Singh, R. K., & Khan, R. A. (2015). Methods of estimating Groundwater Recharge. International Journal of Engineering Associates, 5(2), 6–9

    Google Scholar 

  • Jena, S., Panda, R. K., Ramadas, M., Mohanty, B. P., & Pattanaik, S. K. (2020). Delineation of groundwater storage and recharge potential zones using RS-GIS-AHP: Application in arable land expansion. Remote Sensing Applications: Society and Environment, 19, 100354. https://doi.org/10.1016/j.rsase.2020.100354

    Article  Google Scholar 

  • Jesiya, N. P., Gopinath, G., & Resmi, T. R. (2021). Comprehending the groundwater recharge of a coastal city in humid tropical setting using stable isotopes. Journal of Environmental Management, 287, 112260. https://doi.org/10.1016/j.jenvman.2021.112260

    Article  CAS  Google Scholar 

  • Kahsay, K. D., Pingale, S. M., & Hatiye, S. D. (2018). Impact of climate change on groundwater recharge and base flow in the sub-catchment of Tekeze basin Ethiopia. Groundwater for Sustainable Development, 6, 121–133. https://doi.org/10.1016/j.gsd.2017.12.002

    Article  Google Scholar 

  • Kaniewski, D., Marriner, N., Cheddadi, R., Morhanhe, C., Ontiveros, M. A. C., Fornós, J. J., Giaime, M., Trichon, V., Otto, T., Luce, F., & Campo, E. V. (2020). Recent anthropogenic climate change exceeds the rate and magnitude of natural Holocene variability on the Balearic Islands. Anthropocene, 32, 100268. https://doi.org/10.1016/j.ancene.2020.100268

    Article  Google Scholar 

  • Kendall, M. G. (1975). Rank Correlation Methods. Charles Griffin.

  • Kim, J., Choi, J., Choi, C., & Park, S. (2013). Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya River Basin, Korea. Science of Total Environment, 452–453, 181–195. https://doi.org/10.1016/j.scitotenv.2013.02.005

    Article  CAS  Google Scholar 

  • Kumar, C. P. (2012). Climate change and its impact on groundwater resources. International Journal of Engineering and Science, 1(5), 43–60

    Google Scholar 

  • Kundzewicz, Z. W., Mata, L. J., Arnell, N. W., Döll, P., Jimenez, B., Miller, K., Oki, T., Sen, Z., & Shiklomanov, I. (2008). The implications of projected climate change for freshwater resources and their management. Hydrology Science, 53(1), 3–10

    Article  Google Scholar 

  • Lauffenburguer, Z. H., Gurdaak, J. J., Hobza, C., Woodward, D., & Wolf, C. (2018). Irrigated agriculture and future climate change effects on groundwater recharge, northern High Plains aquifer, USA. Agricultural Water Management, 204, 69–80. https://doi.org/10.1016/j.agwat.2018.03.022

    Article  Google Scholar 

  • Liu, H. (2011). Impact of climate change on groundwater recharge in dry areas: an ecohydrology approach. Journal of Hydrology, 407, 175–183

    Article  Google Scholar 

  • Liu, Y., Zhang, J., Wang, G., Wang, G., Jin, J., Liu, C., Wan, S., & He, R. (2020). How do natural climate variability, anthropogenic climate and basin underlying surface change affect streamflows? A three-source attribution framework and application. Journal of Hydro-environment research, 28, 57–66. https://doi.org/10.1016/j.jher.2018.08.005

    Article  CAS  Google Scholar 

  • Loiselle, D., Du, X., Alessi, D., Bladon, K., & Faramarzi, M. (2020). Projecting impacts of wildfire and climate change on streamflow, sediment, and organic carbon yields in a forested watershed. Journal of Hydrology, 590, 125403. https://doi.org/10.1016/j.jhydrol.2020.125403

    Article  CAS  Google Scholar 

  • Lucas, E. W. M., Sousa, F. A. S., Silva, F. D. S., Rocha, R. L., Jr., Pinto, D. D. C., Silva, V. P. R. (2021). Trends in climate extreme indices assessed in the Xingu river basin—Brazilian Amazon. Weather and Climate Extremes, 31, 100306. https://doi.org/10.1016/j.wace.2021.100306

  • Lyra, A., Tavares, P., Chou, S. C., Sueiro, G., Dereczynski, C. P., Sondermann, M., Silva, A., Marengo, J., & Giarolla, A. (2017). Climate change projections over three metropolitan regions in Southeast Brazil using the non-hydrostatic Eta regional climate model at 5-km resolution. Theoretical and Applied Climatology, 132, 663–682

    Article  Google Scholar 

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13, 59–245

    Article  Google Scholar 

  • Marengo, J.A., Alves, L., Valverde, M., Rocha, R., Laborbe, R. (2007). Eventos extremos em cenários regionalizados de clima no Brasil e América do Sul para o Século XXI: Projeções de clima futuro usando três modelos regionais. MMA, São Paulo

  • Marengo, J.A., Valverde, M.C. (2007). Caracterização do Clima no Século XX e Cenário de Mudanças de Clima para o Brasil no século XXI usando Modelos do IPCC- AR4. Revista Multiciência, Campinas, vol. 8

  • Marengo, J. A., Jones, R., Alves, L. M., & Valverde, M. C. (2009). Future change of temperature and precipitation extremes in South America as derived from the PRECI regional climate modeling system. International Journal of Climatology, 29(15), 2241–2255. https://doi.org/10.1002/joc.1863

    Article  Google Scholar 

  • Marengo, J. A., Rusticucci, M., Penalba, O., & Renom, M. (2010). An intercomparison of observed and simulated extreme rainfall and temperature events during the last half of the twentieth century: Part 2: historical trends. Climatic Change, 98(3–4), 509–529. https://doi.org/10.1007/s10584-009-9743-7

    Article  Google Scholar 

  • Marengo, J. A., Alves, L. M., Soares, W. R., Rodriguez, D. A., Camargo, H., Riveros, M. P., & Pablo, A. D. (2013). Two contrasting severe seasonal extremes in tropical South America in 2012: flood in Amazonia and drought in northeast Brazil. Journal of Climate, 26(22), 9137–9154. https://doi.org/10.1175/JCLI-D-12-00642.1

    Article  Google Scholar 

  • Marques, E. A. G., Silva, G. C., Jr., Eger, G. Z. S., Ilambwetsi, A. M., Raphael, P., Generoso, T. N., Oliveira, J., & Júnior, J. N. (2020). Analysis of groundwater and river stage fluctuations and their relationship with water use and climate variation effects on Alto Grande watershed, Northeastern Brazil. Journal of South American Earth Sciences, 103, 102723. https://doi.org/10.1016/j.jsames.2020.102723

    Article  Google Scholar 

  • Martins, A.M., Capucci, E., Caetano, L.C., Cardoso, G., Barreto, A.B.C., Monsores, A.L.M., Leal, A.S., Viana, P. (2006). Hidrogeologia do Estado do Rio de Janeiro - síntese e estágio atual do conhecimento. In: Congresso Brasileiro de Águas Subterrâneas, 14, 2006. Curitiba: Associação Brasileira de Águas Subterrâneas.

  • McCabe, G.J., Markstrom, S.L. (2007). A monthly water-balance model driven by a graphical user interface: U.S. Geological Survey Open-File report 2007–1088, p. 6

  • Mechal, A., Wagner, T., & Birk, S. (2015). Recharge variability and sensitivity to climate: The example of Gidabo River Basin, Mais Ethiopian Rift. Journal of Hidrology: Regional Studies, 4, 644–660

    Google Scholar 

  • Megahed, A., & Srikantaswamy, S. (2020). Study of the Indicators of Climate Change in Mysore District, Karnataka, India. Atmospheric and Climate Sciences, 10, 159–167. https://doi.org/10.4236/acs.2020.102008

    Article  Google Scholar 

  • Meixner, T., Manning, A. H., Stonestrom, D. A., Allen, D. M., Ajami, H., Blasch, K. W., Brookfield, A. E., Castro, C. L., Clark, J. F., Gochis, D. J., Flint, A. L., Neff, K. L., Niraula, R., Rodell, M., Scanlon, B. R., Singha, K., & Walvoord, M. A. (2016). Implications of Projected climate change for groundwater recharge in the western United States. Journal of Hydrology, 534, 124–138

    Article  Google Scholar 

  • Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances, 2(2), 6. https://doi.org/10.1126/sciadv.1500323

    Article  Google Scholar 

  • Mohebzadeh, H., & Mahboobeh, F. (2019). Quantitative analysis of water balance components in Lake Urmia, Iran using remote sensing technology. Remote Sensing Applications: Society and Environment, 13, 389–400. https://doi.org/10.1016/j.rsase.2018.12.009

    Article  Google Scholar 

  • Montenegro, S., & Ragab, R. (2012). Impact of possible climate and land use changes in the semi arid regions: a case of study from North Eastern Brazil. Journal of Hidrology. https://doi.org/10.1016/j.jhydrol.2012.02.036

    Article  Google Scholar 

  • Morán-Tejeda, E., Zabalza, J., Rahman, K., Gago-Silva, A., López-Moreno, J. I., Vicente- Serrano, S., Lehmann, A., Tague, C. L., & Beniston, M. (2015). Hydrological impacts of climate and land-use changes in a mountain watershed: uncertainty estimation based on model comparison: hydrological impacts of environmental change in a mountain watershed. Ecohydrol, 8(8), 1396–1416. https://doi.org/10.1002/eco.1590

    Article  Google Scholar 

  • Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Rhomson, A. M., Weyant, J. P., & Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756. https://doi.org/10.1038/nature08823

    Article  CAS  Google Scholar 

  • Nazarenko, L., Schmidt, G. A., Miller, R. L., Tausnev, N., Kelley, M., Ruedy, R., Russell, G. L., Aleinov, I., Bauer, M., Bauer, S., Bleck, R., Canuto, V., Cheng, Y., Clune, T. L., Del Genio, A. D., Faluvegi, G., Hansen, J. E., Healy, R. J., Kiang, N. Y., … Zhang, J. (2015). Future climate change under RCP emission scenarios with GISS Model E2. Journal of Advances in Modeling Earth Sciences, 7(1), 244–267. https://doi.org/10.1002/2014MS000403

    Article  Google Scholar 

  • Nygran, M., Giese, M., Klove, B., Haaf, E., Rossi, P. M., & Barthel, R. (2020). Changes in seasonality of groundwater level fluctuations in a temperate-cold climate transition zone. Journal of Hydrology X, 8, 100062. https://doi.org/10.1016/j.hydroa.2020.100062

    Article  Google Scholar 

  • Okwala, T., Shrestha, S., Ghimire, S., Mohanasundaram, S., & Datta, A. (2020). Assessment of climate change impacts on water balance and hydrological extremes in Bang Pakong-Prachin Buri river basin Thailand. Environmental Research, 186, 109544. https://doi.org/10.1016/j.envres.2020.109544

    Article  CAS  Google Scholar 

  • Ottoni MV (2005) Classificação físico-hídrica de solos e determinação da capacidade de campo in situ a partir de testes de infiltração. Dissertation, Federal University of Rio de Janeiro

  • Parajuli, P. B. (2010). Assessing sensitivity of hydrologic responses to climate change from forested watershed in Mississippi. Hydrological Processes, 24, 3785–3797

    Article  Google Scholar 

  • Patil, N. S., Chetan, N. L., Nataraja, M., & Suthar, S. (2020). Climate change scenarios and its effect on groundwater level in the Hiranyakeshi watershed. Groundwater for Sustainable Development, 10, 100323. https://doi.org/10.1016/j.gsd.2019.100323

    Article  Google Scholar 

  • Pulido-Velezquez, D., Collados-Lara, A., & Alcalá, F. J. (2018). Assessing impacts of future potential climate change scenarios on aquifer recharge in continental Spain. Journal of Hydrology, 567, 803–819. https://doi.org/10.1016/j.jhydrol.2017.10.077

    Article  Google Scholar 

  • Reis, L. C., Silva, C. M. S., Bezerra, B. G., Mutti, P. R., Spyrides, M. H. C., Silva, P. E. (2020). Analysis of climate extreme indices in the MATOPIBA Region Brazil. Pure and Applied Geophysics, 177, 4457–4478. https://doi.org/10.1007/s00024-020-02474-4

  • Relatório Mundial das Nações Unidas sobre o Desenvolvimento dos Recursos Hídricos (2017) WWPA: UN-Water

  • Robinne, F., Hallema, D., Bladon, K., & Buttle, J. (2020). Wildfire impacts on hydrologic ecosystem services in North American high-latitude forests: A scoping review. Journal of Hydrology, 581, 124360. https://doi.org/10.1016/j.jhydrol.2019.124360

    Article  Google Scholar 

  • Rozemeijer, J., Noordhuis, R., Ouwerkerk, K., Pires, M. D., Blauw, A., Hooijboer, A., & Oldenborgh, G. J. (2021). Climate variability effects on eutrophication of groundwater, lakes, rivers, and coastal waters in the Netherlands. Science of the Total Environment, 771, 145366. https://doi.org/10.1016/j.scitotenv.2021.145366

    Article  CAS  Google Scholar 

  • Salles, L. A., Lima, J. E. F. W., Roig, H. L., & Malaquias, J. V. (2018). Environmental factors and groundwater behavior in an agricultural experimental basin of the Brazilian central plateau. Applied Geography, 94, 272–281. https://doi.org/10.1016/j.apgeog.2018.02.007

    Article  Google Scholar 

  • Samper, J., Huguet, A. J., Garcíavera, M.A. (1999). Manual del usuario del programa Visual Balan v.2.0: Código interactivo para la realización de balances hidrológicos y la estimación de la recarga. ENRESA, Madrid

  • Samuels, R., Smiatek, G., Krichak, S., Kunstmann, H., & Alpert, P. (2011). Extreme value indicators in highly resolved climate change simulations for the Jordan River area. Journal of Geophysical Research, 116, D24123. https://doi.org/10.1029/2011JD016322

    Article  Google Scholar 

  • Sánchez, E., Gallardo, C., Gaertner, M. A., Arribas, A., & Castro, M. (2004). Future climate extreme events in the Mediterranean simulated by a regional climate model: A first approach. Global and Planetary Change, 44(1–4), 163–180. https://doi.org/10.1016/j.gloplacha.2004.06.010

    Article  Google Scholar 

  • Santos, C. A. C., & Oliveira, V. G. (2017). Trends in extreme climate indices for Pará State Brazil. Revista Brasileira de Meteorologia, 32(1), 13–24. https://doi.org/10.1590/0102-778632120150053

    Article  Google Scholar 

  • Schuler, C., Brewington, L., & El-Kadi, A. I. (2021). A participatory approach to assessing groundwater recharge under future climate and land-cover scenarios, Tutuila, American Samoa. Journal of Hydrology: Regional Studies, 34, 100785. https://doi.org/10.1016/j.ejrh.2021.100785

    Article  Google Scholar 

  • Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M. J., Trotsiuk, V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T. A., & Reyer, C. P. O. (2017). Forest Disturbances under climate change. Nature Climate Change, 7(6), 395–402. https://doi.org/10.1038/nclimate3303

    Article  Google Scholar 

  • Sen, P. K. (1968). Estimates of the Regression Coefficient based on Kendall’s Tau. Journal of American Statistics Association, 63, 1379–1389

    Article  Google Scholar 

  • Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., & Zhang, X. (2012). Changes in climate extremes and their impacts on the natural physical environment. In C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, M. D. Mastrandrea, K. J. Mach, G.-K. Plattner, S. K. Allen, M. Tignor, & P. M. Midgley (Eds.), Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change (IPCC). (pp. 109–230). Cambridge: Cambridge University Press.

    Google Scholar 

  • Silva, P. E., Silva, C. M. S., Spyrides, M. H. C., & Andrade, L. M. B. (2019). Análise de índices de extremos climáticos no Nordeste e Amazônia brasileira para o período entre 1980 a 2013. Anuário do Instituto de Geociências da UFRJ, 42(2), 137–148. https://doi.org/10.11137/2019_2_137_148

    Article  Google Scholar 

  • Silva Jr., G. C., Alves, M. G., Mello, C. L. (2014). Projeto Avaliação Hidrogeológica da Formação Emborê na porção emersa da Bacia de Campos visando o descarte de água de produção de petróleo. Federal University of Rio de Janeiro

  • Silva, W. L., Dereczynski, C. P. (2014). Caracterização climatológica e tendências observadas em extremos climáticos no estado do Rio de Janeiro. Anuário do Instituto de Geociências, 37(2), 123–138

  • Smith, H., Sheridan, G., Lane, P., Nyman, P., & Haydon, S. (2011). Wildfire effects on water quality in forest catchments: A review with implications for water supply. Journal of Hydrology, 396, 170–192. https://doi.org/10.1016/j.jhydrol.2010.10.043

    Article  CAS  Google Scholar 

  • Smith, M., Cross, K., Paden, M., & Laban, P. (2016). Spring—Managing groundwater sustainability. IUCN.

  • Su, B., Zeng, X., Zhai, J., Wang, Y., & Li, X. (2015). Projected precipitation and streamflow under SRES and RCP emission scenarios in the Songhuajiang River basin China. Quaternary International, 380–381, 95–105. https://doi.org/10.1016/j.quaint.2014.03.049

    Article  Google Scholar 

  • Tan, M. L., Ibrahim, A. L., Yusop, Z., Chua, V. P., & Chan, N. W. (2017). Climate change impacts under CMIP5 RCP scenarios on water resources of the Kelantan River Basin, Malaysia. Atmospheric Research, 189, 1–10. https://doi.org/10.1016/j.atmosres.2017.01.008

    Article  Google Scholar 

  • Tanaka, S. K., Tingju, Z., Lund, J. R., Howitt, R. E., Jenkins, M. W., Pulido, M. A., Tauber, M., Ritzema, R. S., & Ferreira, I. C. (2006). Climate warming and water management adaptation for California. Climate Change, 76, 361–387

    Article  Google Scholar 

  • Tebaldi, C., Hayhoe, K., Arblaster, J., & Meehl, G. (2006). Going to the extremes: an intercomparison of model-simulated historical and future changes in extreme events. Climatic Change, 79(3–4), 185–211. https://doi.org/10.1007/s10584-006-9051-4

    Article  Google Scholar 

  • Theis, C. V. (1940). The source of water derived from wells—Essential factors controlling the response of an aquifer to development. Civil Engineering, 10, 277–280

    Google Scholar 

  • Thornthwaite, C. W., & Mather, J. R. (1955). The water balance. Publications in Climatology, 8(1), 104

    Google Scholar 

  • Thornthwaite, C. W. (1948). An approach toward a rational classification of climate geographical review. Geographic Review, 38(1), 55–94

    Article  Google Scholar 

  • Tillman, F. D., Pruitt, T., & Gangopadhyay, S. (2018). Effect of spatial and temporal scale on simulated groundwater recharge investigations. Advances in Water Resources, 119, 257–270

    Article  Google Scholar 

  • Tundisi, J. G., & Tundisi, T. M. (2014). Recursos hídricos no século XXI. Oficina de Textos.

  • Turco, M., Jerez, S., Augusto, S., Tarín-Carrasco, P., Ratola, N., Jimenéz-Guerrero, P., & Trigo, R. (2019). Climate drivers of the 2017 devastating fires in Portugal. Scientific Reports: Nature researches, 9, 13886. https://doi.org/10.1038/s41598-019-50281-2

    Article  CAS  Google Scholar 

  • UNICEF (2021) Water Security for all. Available online: https://www.unicef.org/media/95241/file/water-security-for-all.pdf (accessed on 07 April 2021).

  • United Nations (2021) Summary Progress Update 2021: SDG 6 — water and sanitation for all. Available online: https://www.unwater.org/publications/summary-progress-update-2021-sdg-6-water-and-sanitation-for-all/ (accessed on 03 April 2021)

  • Van Vuuren, D. P., Edmonds, J., & Kainuma, M. (2011). The representative concentration pathways: an overview. ClimChange, 109, 5–31

    Google Scholar 

  • Vörösmarty, C. J., Green, P., Salisbury, L., & Lammers, R. B. (2000). Global water resources: vulnerability from climate change and population growth. Science, 289(5477), 284–288. https://doi.org/10.1126/science.289.5477.284

    Article  Google Scholar 

  • WHO/UNICEF. (2017) Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines. Available online: https://www.who.int/mediacentre/news/releases/2017/launch-version-report-jmp-watersanitation-hygiene.pdf (accessed on 05 August 2020).

  • Winter, W. R., Jahnert, R. J., & França, A. B. (2007). Bacia de Campos. Boletim de Geociências da Petrobras, 15(2), 501–509

    Google Scholar 

  • Wisser, D., Frolking, S., Douglas, E. M., Fekete, B. M., Vörösmarty, C. J., & Schumann, A. H. (2008). Global irrigation water demand: Variability and uncertainties arising from agricultural and climate data sets. Geophysical Research Letters, 35(24), 5. https://doi.org/10.1029/2008GL035296

    Article  Google Scholar 

  • WWAP (United Nations World Water Assessment Programme). (2015a). The United Nations World Water Development Report 2015: Water for a Sustainable World. UNESCO.

  • WWAP (United Nations World Water Assessment Programme). (2015b). The United Nations World Water Development Report 2015: Facing the Challenges. UNESCO.

  • Zagonari, F. (2010). Sustainable, Just, equal, and optimal groundwater management strategies to cope with climate change: insights from Brazil. Water Resources Manage, 24, 3731–3756. https://doi.org/10.1007/s11269-010-9630-z

    Article  Google Scholar 

  • Zektser, I. S., & Everett, L. G. (2004). Groundwater Resources of the world and their use. (p. 346p). UNESCO.

  • Zhang, X., Yang, F. (2004). RClimDex (1.0) – User Manual. Climate Research Branch Environment, Canada

  • Zhang, Y., You, Q., Chen, C., & Ge, J. (2016). Impacts of climate change on streamflows under RCP scenarios: A case study in Xin River Basin China. Atmospheric Research, 178–179, 521–534. https://doi.org/10.1016/j.atmosres.2016.04.018

    Article  Google Scholar 

  • Zhao, Y., & Wang, L. (2021). Determination of groundwater recharge processes and evaluation of the ‘two water worlds’ hypothesis at a check dam on the Loess Plateau. Journal of Hydrology, 595, 125989. https://doi.org/10.1016/j.jhydrol.2021.125989

    Article  CAS  Google Scholar 

  • Zhou, P., Wand, G., Duan, R. (2020). Impacts of long-term climate change on the groundwater flow dynamics in a regional groundwater system: Case modeling study in Alashan China. Journal of Hydrology, 590, 125557. https://doi.org/10.1016/j.jhydrol.2020.125557

  • Zhu, R., Zheng, H., Croke, B. F. W., & Jakeman, A. J. (2020). Quantifying climate contributions to changes in groundwater discharge for headwater catchments in a major Australian basin. Science of the total Environment, 729, 138910. https://doi.org/10.1016/j.scitotenv.2020.138910

    Article  CAS  Google Scholar 

  • Zilli, M. T., Carvalho, L. M. V., Liebmann, B. E., Silva Dias, M. A. (2016). A comprehensive analysis of trends in extreme precipitation over southeastern coast of Brazil. International Journal of Climatology. https://doi.org/10.1002/joc.4840

Download references

Acknowledgements

The author would like to thank CAPES—Coordination of Improvement of Higher Level Personnel for the scholarship and the financial support of this research and to the Federal University of Rio de Janeiro—(UFRJ) for all the support during field trips.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana La Pasta Cordeiro.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La Pasta Cordeiro, M., da Silva Junior, G.C., Dereczynski, C.P. et al. Analysis of indicators of climate extremes and projection of groundwater recharge in the northern part of the Rio de Janeiro state, Brazil. Environ Dev Sustain 23, 18311–18336 (2021). https://doi.org/10.1007/s10668-021-01441-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01441-w

Keywords

Navigation