Abstract
Urban lakes in developing economies face tremendous anthropogenic pressure which tends to modify their role in the regional carbon cycle. This makes it imperative to quantify their carbon budget and identify the underlying factors and processes. Present study aims to understand the seasonal carbon dioxide (CO2) dynamics of an urban lake in a semi-arid subtropical region and identify major controls operating on it. Systematic sampling of Bhalswa lake waters was undertaken in winter and summer of 2017–2018. The hydrochemical data generated were used to determine partial pressure and evasion flux of CO2 using pH and total alkalinity couple. The lake waters show CO2 supersaturation with respect to atmospheric equilibrium and act as a source of CO2 to the atmosphere in both seasons. The average partial pressure of carbon dioxide (pCO2) and CO2 evasion flux observed is 1033.73 ± 229.07 µatm and 6.33 ± 2.23 mmol m−2 d−1, and 1034.99 ± 187.37 µatm and 11.65 ± 3.42 mmol m−2 d−1 during winter and summer, respectively. Neither pCO2 nor CO2 evasion flux shows any significant seasonal difference. For yearly dynamics, dissolved organic carbon, dissolved inorganic carbon and dissolved oxygen act as strong controls on lake water pCO2. While for individual seasons, pH and water temperature act as significant controls. Among various pollution sources, untreated sewage and dairy waste, seepage of polluted groundwater and atmospheric dust impact the lake's carbon dynamics. The present study will help better understand the role of freshwater wetlands of ever-expanding urban areas in the regional carbon cycle of developing economies.







Similar content being viewed by others
Data availability
Available on request.
References
Abril, G., Richard, S., & Guerin, F. (2006). In situ measurements of dissolved gases (CO2 and CH4) in a wide range of concentrations in a tropical reservoir using an equilibrator. Science of the Total Environment, 354(2–3), 246–251. https://doi.org/10.1016/j.scitotenv.2004.12.051
Ahamad, A., Raju, N. J., Madhav, S., Gossel, W., & Wycisk, P. (2018). Impact of non-engineered Bhalswa landfill on groundwater from quaternary alluvium in Yamuna flood plain and potential human health risk, New Delhi, India. Quaternary International, 507, 352–369. https://doi.org/10.1016/j.quaint.2018.06.011
Algesten, G., Sobek, S., Bergström, A.-K., Ågren, A., Tranvik, L. J., & Jansson, M. (2004). Role of lakes for organic carbon cycling in the boreal zone. Global Change Biology, 10, 141–147. https://doi.org/10.1111/j.1365-2486.2003.00721.x
All India report of the sixth economic census. New Delhi, India: Ministry of Statistics and Programme Implementation, Central Statistics Office.
American Public Health Association (2005) Standard methods for the examination of water and wastewater. 21st ed. American Public Health Association, Washington DC (USA), 1220p. ISBN—0875530478 9780875530475.
Anshumali, & Ramanathan, A. L. (2007). Seasonal variation in the major ion chemistry of Pandoh Lake, Mandi District, Himachal Pradesh, India. Applied Geochemistry, 22(8), 1736–1747. https://doi.org/10.1016/j.apgeochem.2007.03.045
Avdan, U., & Jovanovska, G. (2016). Algorithm for automated mapping of land surface temperature using Landsat 8 satellite data. Journal of Sensors. https://doi.org/10.1155/2016/1480307.
Bade, D. L., & Cole, J. J. (2006). Impact of chemically enhanced diffusion on dissolved inorganic carbon stable isotopes in a fertilised lake. Journal of Geophysical Research, 111, C01014. https://doi.org/10.1029/2004JC002684
Balmer, M. B., & Downing, J. A. (2011). Carbon dioxide concentrations in eutrophic lakes: Undersaturation implies atmospheric uptake. Inland Waters, 1(2), 125–132. https://doi.org/10.5268/IW-1.2.366
Barkan, E., Luz, B., & Lazar, B. (2001). Dynamics of the carbon dioxide system in the Dead Sea. Geochimica et Cosmochimica Acta, 65, 355–368. https://doi.org/10.1016/S0016-7037(00)00540-8
Bassi, N., & Kumar, M. D. (2017). Water quality index as a tool for wetland restoration. Water Policy, 19(3), 390–403. https://doi.org/10.2166/wp.2017.099
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771–1789. https://doi.org/10.1890/03-9000
Chanda, A., Das, S., Bhattacharyya, S., Das, I., Giri, S., Mukhopadhyay, A., Samanta, S., Dutta, D., Akhand, A., Choudhury, S. B., & Hazra, S. (2019). CO2 fluxes from aquaculture ponds of a tropical wetland: Potential of multiple lime treatment in reduction of CO2 emission. Science of the Total Environment, 655, 1321–1333. https://doi.org/10.1016/j.scitotenv.2018.11.332
Chandramouli, C. (2011). Census of India. Provisional population totals, paper 1 of 2011, India, Series 1. 2011; India: Office of Registrar General and Census Commissioner. 188. http://www.censusindia.gov.in/2011-prov-results/prov_results_paper1_india.html. Accessed 15 July 2019.
Chung, S., Park, H., & Yoo, J. (2018). Variability of pCO2 in surface waters and development of prediction model. Science of The Total Environment, 622-623, 1109–1117. https://doi.org/10.1016/j.scitotenv.2017.12.066.
Chung, S. W., Yoo, J. S., Park, H. S., & Schladow, S. G. (2016). Estimation of CO2 emission from a eutrophic reservoir in temperate region. Journal of Korean Society on Water Environment, 32(5), 433–441. https://doi.org/10.15681/KSWE.2016.32.5.433
Cole, J. J., Bade, D. L., Bastviken, D., Pace, M. L., & Van de Bogert, M. (2010). Multiple approaches to estimating air-water gas exchange in small lakes. Limnology and Oceanography Methods, 8(6), 285–293. https://doi.org/10.4319/lom.2010.8.285
Cole, J. J., Caraco, N. F., Kling, G. W., & Kratz, T. K. (1994). Carbon dioxide supersaturation in the surface waters of lakes. Science, 265, 1568–1570. https://doi.org/10.1126/science.265.5178.1568
Cole, J. J., & Caraco, N. F. (1998). Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnology and Oceanography., 43(4), 647–656. https://doi.org/10.4319/lo.1998.43.4.0647
Cole, J. J., & Caraco, N. F. (2001). Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Marine and Freshwater Research, 52, 101–110. https://doi.org/10.1071/MF00084
Cole, J. J., Pace, M. L., Carpenter, S. R., & Kitchell, J. F. (2000). Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnology and Oceanography, 45(8), 1718–1730. https://doi.org/10.4319/lo.2000.45.8.1718
Crusius, J., & Wanninkhof, R. (2003). Gas transfer velocities measured at low wind speed over a lake. Limnology and Oceanography, 48(3), 1010–1017. https://doi.org/10.4319/lo.2003.48.3.1010
Dash, J. P., Sarangi, A., & Singh, D. K. (2010). Spatial variability of groundwater depth and quality parameters in the national capital territory of Delhi. Environmental Management, 45, 640–650. https://doi.org/10.1007/s00267-010-9436-z
Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165–173. https://doi.org/10.1038/nature04514
Deepika, S. S., & Singh, S. K. (2015). Water quality index assessment of Bhalswa Lake New Delhi. International Journal of Advanced Research, 3(5), 1052–1059
Dickson, A. G., & Millero, F. J. (1987). A comparison of the equilibrium-constants for the dissociation of carbonic-acid in seawater media. Deep Sea Research Part A Oceanographic Research Papers, 34, 1733–1743. https://doi.org/10.1016/0198-0149(87)90021-5
Duarte, C. M., Prairie, Y. T., Montes, C., Cole, J. J., Striegl, R., Melack, J., & Downing, J. A. (2008). CO2 emissions from saline lakes: A global estimate of a surprisingly large flux. Journal of Geophysical Research: Biogeosciences, 113, G04041. https://doi.org/10.1029/2007JG000637
Finlay, K., Levitt, B., Wissel, B., & Prairie, Y. T. (2009). Regulation of spatial and temporal variability of carbon flux in six hard-water lakes of the northern great plains. Limnology and Oceanography., 53(6), 2553–2564. https://doi.org/10.4319/lo.2009.54.6_part_2.2553
Graneli, W., Lindell, M., & Tranvik, L. (1996). Photo-oxidative production of dissolved inorganic carbon in lakes of different humic content. Limnology and Oceanography, 41(4), 698–706. https://doi.org/10.4319/lo.1996.41.4.0698
Guillemette, F., McCallister, S. L., & del Giorgio, P. A. (2013). Differentiating the degradation dynamics of algal and terrestrial carbon within complex natural dissolved organic carbon in temperate lakes. Journal of Geophysical Research Biogeosciences, 118, 963–973. https://doi.org/10.1002/jgrg.20077
Gupta, G., Sarma, V., Robin, R., Raman, A., Jai Kumar, M., Rakesh, M., & Subramanian, B. (2008). Influence of net ecosystem metabolism in transferring riverine organic carbon to atmospheric CO2 in a tropical coastal lagoon (Chilka Lake, India). Biogeochemistry, 87, 265–285. https://doi.org/10.1007/s10533-008-9183-x
Gupta, G. V. M., Thottathil, S. D., Balachandran, K. K., Madhu, N. V., Madeswaran, P., & Nair, S. (2009). CO2 Supersaturation and Net Heterotrophy in a Tropical Estuary (Cochin, India): Influence of Anthropogenic Effect. Ecosystems, 12, 1145–1157
Hanson, P. C., Pollard, A. I., Bade, D. L., Predick, K., Carpenter, S. R., & Foley, J. A. (2004). A model of carbon evasion and sedimentation in temperate lakes. Global Change Biology, 10, 1285–1298.
Hope, D., Kratz, T. K., & Riera, J. L. (1996). Relationship between pCO2 and dissolved organic carbon in Northern Wisconsin lakes. Journal of Environmental Quality, 25, 1442–1445.
Jana, B. B., Nandy, S. K., Lahiri, S., Bhakta, J. N., Biswas, J. K., Bag, S. K., Ghosh, P., Maity, S. K., & Jana, S. (2020). Heterogeneity of water quality signature and feedbacks to carbon sequestration in wetlands across some districts of West Bengal, India. Journal of Water and Climate Change, 11(2), 434–450.
Jansson, M., Bergström, A. K., Blomqvist, P., & Drakare, S. (2000). Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes. Ecology, 81(11), 3250–3255. https://doi.org/10.1890/0012-9658(2000)081[3250:AOCAPB]2.0.CO;2
Jonsson, A., Karlsson, J., & Jansson, M. (2003). Sources of carbon dioxide supersaturation in clearwater and humic lakes in northern Sweden. Ecosystems, 6, 224–235. https://doi.org/10.1007/s10021-002-0200-y
Joshi, P., Siddaiah, N. S., & Dixit, A. (2021). Urban wetlands of Delhi, India: Water quality and pollution status. Chemistry and Ecology, 37(2), 104–131. https://doi.org/10.1080/02757540.2020.1836164
Kapitonov, I. A. (2020). Development of low-carbon economy as the base of sustainable improvement of energy security. Environment Development and Sustainability, 23, 3077–3096. https://doi.org/10.1007/s10668-020-00706-0
Kessler, T. J., & Harvey, C. F. (2001). The global flux of carbon dioxide into groundwater. Geophysical Research Letters, 28(2), 279–282. https://doi.org/10.1029/2000GL011505
Khan, K., Su, C. W., Tao, R., & Hao, L. H. (2020). Urbanisation and carbon emission: causality evidence from the new industrialised economies. Environment Development and Sustainability, 22, 7193–7213. https://doi.org/10.1007/s10668-019-00479-1
Koenings, J. P., & Edmundson, J. A. (1991). Secchi disk and photometer estimates of light regimes in Alaskan lakes: Effects of yellow color and turbidity. Limnology and Oceanography. https://doi.org/10.4319/lo.1991.36.1.0091
Kortelainen, P., Rantakari, M., Huttunen, J. T., Mattsson, T., Alm, J., Juutinen, S., Larmola, T., Silvola, J., & Martikainen, P. J. (2006). Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Global Change Biology, 12, 1554–1567. https://doi.org/10.1111/j.1365-2486.2006.01167.x
Kosten, S., Roland, F., Da Motta Marques, D. M. L., Van Nes, E. H., Mazzeo, N., da Sternberg, L. D. S. L., Scheffer, M., & Cole, J. J. (2010). Climate-dependent CO 2 emissions from lakes: CLIMATE-DEPENDENT CO 2 EMISSIONS. Global Biogeochemical Cycles, 24(2), 243–265
Kumar, B., Verma, K., & Kulshrestha, U. C. (2014). Deposition and mineralogical characteristics of atmospheric dust in relation to land use and land cover change in Delhi (India). Geography Journal. https://doi.org/10.1155/2014/325612
Kumar, M., Ramanathan, A. L., Rao, M. S., & Kumar, B. (2006). Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi India. Environmental Geology, 50(7), 1025–1039. https://doi.org/10.1007/s00254-006-0275-4
Kumar, N. J. I., & Oommen, C. (2009). Variations in Hydrochemical characteristics of two distinct wetlands of Central India. Nature Environment and Pollution Technology, 8(2), 269–277
Laćan I, Matthews KR, & Feldman K (2006) A Practical method for calculating lake volume over time: Using GPS to measure water availability in small lakes inhabited by the mountain yellow-legged frog (Rana muscosa) in Kings Canyon National Park, California.https://www.fs.fed.us/psw/publications/matthews/2006_lacan_matthews_ESRI.pdf. Accessed on 09.04.2020.
Lal, M., Nozawa, T., Emori, S., Harasawa, H., Takahashi, K., Kimoto, M., Abe-Ouchi, A., Nakajima, T., Takemura, T., & Numaguti, A. (2001). Future climate change: implications for Indian summer monsoon and its variability. Current Science, 81, 1196–1207
Lapierre, J. F., Guillemette, F., Berggren, M., & del Giorgio, P. A. (2013). Increases in terrestrially derived carbon stimulate organic carbon processing and CO2 emissions in boreal aquatic ecosystems. Nature Communications, 4, 2972. https://doi.org/10.1038/ncomms3972
Le Quéré, C., Andrew, R. M., Friedlingstein, P., et al. (2018). Global carbon budget 2018. Earth System Science Data, 10(4), 2141–2194. https://doi.org/10.5194/essd-10-2141-2018
Li, S., Lu, X. X., & Bush, R. T. (2013). CO2 partial pressure and CO2 emission in the Lower Mekong River. Journal of Hydrology, 504, 4056. https://doi.org/10.1016/j.jhydrol.2013.09.024
Li, J., Wang, G., Aggarwal, S. G., Huang, Y., Ren, Y., Zhou, B., Singh, K., Gupta, P. K., Cao, J., & Zhang, R. (2014). Comparison of abundances, compositions and sources of elements, inorganic ions and organic compounds in atmospheric aerosols from Xi’an and New Delhi, two megacities in China and India. Science of the Total Environment, 476–477, 485–495. https://doi.org/10.1016/j.scitotenv.2014.01.011
Loo, Y. Y., Billa, L., & Singh, A. (2015). Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geoscience Frontiers, 6, 817–823. https://doi.org/10.1016/j.gsf.2014.02.009
Maberly, S. C., Barker, P. A., Stott, A. W., & De Ville, M. M. (2012). Catchment productivity controls CO2 emissions from lakes. Nature Climate Change, 3, 391–394. https://doi.org/10.1038/nclimate1748
MacIntyre S, Wanninkhof R and Chanton J (1995) Trace gas exchange across the air-water interface in freshwater and coastal marine environments. Biogenic trace gases: Measuring emissions from soil and water 5297
Macklin, P. A., Suryaputra, I. G. N. A., Maher, D. T., & Santos, I. R. (2018). Carbon dioxide dynamics in a lake and a reservoir on a tropical Island (Bali, Indonesia). PLoS ONE. https://doi.org/10.1371/journal.pone.0198678
Mallick, S., & Dutta, V. (2009). Estimation of methane emission from a North-Indian subtropical wetland. Journal of Sustainable Development, 2, 125–132. https://doi.org/10.5539/jsd.v2n2p125
Marcé, R., Obrador, B., Josep-Anton, M., Riera, J. L., López, P., & Joan, A. (2015). Carbonate weathering as a driver of CO2 supersaturation in lakes. Nature Geosciences, 8, 107–111. https://doi.org/10.1038/ngeo2341
Marescaux, A., Thieu, V., Borges, A. V., & Garnier, J. (2018). Seasonal and spatial variability of the partial pressure of carbon dioxide in the human-impacted Seine River in France. Scientific Reports, 8, 13961. https://doi.org/10.1038/s41598-018-32332-2
Marotta, H., Duarte, C., Pinho, L., & Enrich-Prast, A. (2010). Rainfall leads to increased pCO2 in Brazilian coastal lakes. Biogeosciences, 7(5), 1607–1614. https://doi.org/10.5194/bg-7-1607-2010
Marotta, H., Duarte, C. M., Sobek, S., & Enrich-Prast, A. (2009). Large CO2 disequilibria in tropical lakes. Global Biogeochemical Cycles. https://doi.org/10.1029/2008GB003434
McCallister, S. L., & del Giorgio, P. A. (2012). Evidence for the respiration of ancient terrestrial organic C in northern temperate lakes and streams. Proceedings of the National Academy of Sciences USA, 109(42), 16963–16968. https://doi.org/10.1073/pnas.1207305109
Mcconnaughey, T. A., Labaugh, J. W., Rosenberry, D. O., Striegel, R. G., Reddy, M. M., Schuster, P. F., & Carter, V. (1994). Carbon budget for a groundwater-fed lake: Calcification supports photosynthesis. Limnology and Oceanography, 39, 1319–1332. https://doi.org/10.4319/lo.1994.39.6.1319
McGillis, W. R., Edson, J., Hare, J., & Fairall, C. (2001). Direct covariance air-sea CO2 fluxes. Journal of Geophysical Research: Oceans., 106(C8), 16729–16745. https://doi.org/10.1029/2000JC000506
McGowan, S., Anderson, N. J., Edwards, M. E., Langdon, P. G., Jones, V. J., Turner, S., van Hardenbroek, M., Whiteford, E., & Wiik, E. (2016). Long-term perspectives on terrestrial and aquatic carbon cycling from palaeolimnology. WIREs Water, 3, 211–234. https://doi.org/10.1002/wat2.1130
Mehrbach, C., Culberso, Ch., Hawley, J. E., & Rm, P. (1973). Measurement of apparent dissociation-constants of carbonic-acid in seawater at atmospheric-pressure. Limnology and Oceanography, 18, 897–907. https://doi.org/10.4319/lo.1973.18.6.0897
Muduli, P. R., Kanuri, V. V., Robin, R. S., Charan Kumar, B., Patra, S., Raman, A. V., Rao, G. N., & Subramanian, B. R. (2012). Spatio-temporal variation of CO2 emission from Chilika Lake, a tropical coastal lagoon, on the east coast of India. Estuarine, Coastal and Shelf Science, 113, 305–313. https://doi.org/10.1016/j.ecss.2012.08.020
Murugavel, P., & Pandian, T. J. (2000). Effect of altitude on hydrology, productivity and species richness in Kodayar: A tropical peninsular Indian aquatic system. Hydrobiologia, 430, 33–57. https://doi.org/10.1023/A:1004069013459
Ngochera, M. J., & Bootsma, H. A. (2020). Spatial and temporal dynamics of pCO2 and CO2 flux in tropical Lake Malawi. Limnology and Oceanography, 65, 1594–1607. https://doi.org/10.1002/lno.11408
Pace ML and Prairie YT (2004) Respiration in lakes. In: Respiration in Aquatic Systems (eds del Giorgio PA, Williams PJLeB), Oxford University Press, Oxford. pp. 103–121. https://doi.org/https://doi.org/10.1093/acprof:oso/9780198527084.001.0001
Panneer Selvam, B., Natchimuthu, S., Arunachalam, L., & Bastviken, D. (2014). Methane and carbon dioxide emissions from inland waters in India: Implications for large scale greenhouse gas balances. Global Change Biology, 20, 3397–3407. https://doi.org/10.1111/gcb.12575
Peng, T., & Deng, H. (2021). Research on the sustainable development process of low-carbon pilot cities: The case study of Guiyang, a low-carbon pilot city in south-west China. Environment Development and Sustainability, 23, 2382–2403. https://doi.org/10.1007/s10668-020-00679-0
Perkins, A. K., Santos, I. R., Sadat-Noori, M., Gatland, J. R., & Maher, D. T. (2015). Groundwater seepage as a driver of CO2 evasion in a coastal lake (Lake Ainsworth, NSW, Australia. Environment Earth Sciences, 74, 779–792. https://doi.org/10.1007/s12665-015-4082-7
Pierrot D, Lewis DE and Wallace DWR (2006) CO2SYS DOS Program developed for CO2 system calculations. ORNL/CDIAC‐105. Carbon dioxide information analysis center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN
Pinho, L., Duarte, C. M., Marotta, H., & Enrich-Prast, A. (2016). Temperature-dependence of the relationship between pCO2 and dissolved organic carbon in lakes. Biogeosiences, 13, 865–871. https://doi.org/10.5194/bg-13-865-2016
Piovano, E. L., Ariztegui, D., Bernasconi, S. M., & McKenzie, J. A. (2004). Stable isotopic record of hydrological changes in subtropical Laguna Mar Chiquita (Argentina) over the last 230 years. Holocene, 14, 525–535. https://doi.org/10.1191/0959683604hl729rp
Prairie, Y. T., Bird, D. F., & Cole, J. J. (2002). The summer metabolic balance in the epilimnion of southeastern Quebec lakes. Limnology and Oceanography, 47, 316–321. https://doi.org/10.4319/lo.2002.47.1.0316
Ramanathan, A. L. (2007). Seasonal variation in the major ion chemistry of Pandoh Lake, Mandi District, Himachal Pradesh India. Applied Geochemistry, 22(8), 1736–1747
Rantakari, M., & Kortelainen, P. (2005). Interannual variation and climatic regulation of the CO2 emission from large boreal lakes. Global Change Biology, 11(8), 1368–1380. https://doi.org/10.1111/j.1365-2486.2005.00982.x
Raymond, P. A., Bauer, J. E., & Cole, J. J. (2000). Atmospheric CO2 evasion, dissolved inorganic carbon production, and net heterotrophy in the York River estuary. Limnology and Oceanography. https://doi.org/10.4319/lo.2000.45.8.1707
Raymond, P. A., Hartmann, J., Lauerwald, R., et al. (2013). Global carbon dioxide emissions from inland waters. Nature, 503, 355–359. https://doi.org/10.1038/nature12760
Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M., & Hess, L. L. (2002). Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature, 416, 617–620. https://doi.org/10.1038/416617a
Robin, R. S., Kanuri, V. V., Muduli, P. R., Ganguly, D., Patra, S., Hariharan, G., & Subramanian, B. R. (2016). CO2 saturation and trophic shift induced by microbial metabolic processes in a river-dominated ocean margin (Tropical Shallow Lagoon, Chilika, India). Geomicrobiology Journal, 33(6), 513–529. https://doi.org/10.1080/01490451.2015.1059525
Sand-Jensen, K., & Staehr, P. A. (2007). Scaling of pelagic metabolism to size, trophy and forest cover in small Danish lakes. Ecosystems, 10, 127–141. https://doi.org/10.1007/s10021-006-9001-z
Santos, I. R., Maher, D. T., & Eyre, B. D. (2012). Coupling automated radon and carbon dioxide measurements in coastal waters. Environment Science Technology, 46(14), 7685–7691. https://doi.org/10.1021/es301961b
Sarkar, S., & Maity, R. (2020). Increase in probable maximum precipitation in a changing climate over India. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2020.124806
Sarkar, S., Chauhan, A., Kumar, R., & Singh, R. P. (2019). Impact of deadly dust storms (May 2018) on air quality, meteorological and atmospheric parameters over the northern parts of India. Geohealth, 3, 67–80. https://doi.org/10.1029/2018GH000170
Sarma, V., Kumar, M. D., & Manerikar, M. (2001). Emission of carbon dioxide from a tropical estuarine system, Goa, India. Geophysical Research Letters, 28, 1239–1242. https://doi.org/10.1029/2000GL006114
Sarma, V. V. S. S., Kumar, N. A., Prasad, V. R., et al. (2011). High CO2 emissions from the tropical Godavari estuary (India) associated with monsoon river discharges. Geophysical Research Letters, 38, L08601. https://doi.org/10.1029/2011GL046928
Sharma, B. K. (2005). Rotifer communities of floodplain lakes of the Brahmaputra basin of lower Assam (N.E. India): biodiversity, distribution and ecology. Hydrobiologia, 533, 209–221. https://doi.org/10.1007/s10750-004-2489-3
Sharma, P. C., & Pant, M. C. (1987). Seasonality, Population Dynamics and Production of Daphnia longispina in the Subtropical Lake Bhimtal (UP), India. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 72, 71–80. https://doi.org/10.1002/iroh.19870720109
Singh, S., & Beegum, S. N. (2013). Direct radiative effects of an unseasonal dust storm at a western Indo Gangetic plain station Delhi in ultraviolet, short and longwave region. Geophysical Research Letters, 40, 2444–2449. https://doi.org/10.1002/grl.50496
Singh, S., Nath, S., Kohli, R., & Singh, R. (2005). Aerosols over Delhi during pre-monsoon months: Characteristics and effects on surface radiation forcing. Geophysical Research Letters, 32, L13808. https://doi.org/10.1029/2005GL023062
Sobek, S., Tranvik, L. J., & Cole, J. J. (2005). Temperature independence of carbon dioxide supersaturation in global lakes. Global Biogeochemical Cycles. https://doi.org/10.1029/2004GB002264
Sowmyashree MV and Ramachandra TV (2012) Temporal analysis of water bodies in mega cities of India (wgbis.ces.iisc.ernet.in) Accessed on 13.07.2019
Srivastava, S. K., & Ramanathan, A. L. (2008). A geochemical assessment of groundwater quality in vicinity of Bhalswa Landfill, Delhi, India, using graphical and multivariate statistical methods. Environmental Geology, 53(7), 1509–1528. https://doi.org/10.1007/s00254-007-0762-2
Striegl, R. G., & Michmerhuizen, C. M. (1998). Hydrologic influence on methane and carbon dioxide dynamics at two north-central Minnesota lakes. Limnology and Oceanography., 43(7), 1519–1529. https://doi.org/10.4319/lo.1998.43.7.1519
Tadonléké, R. D., Marty, J., & Planas, D. (2012). Assessing factors underlying variation of CO2 emissions in boreal lakes versus reservoirs. FEMS Microbiology Ecology, 79(2), 282–297. https://doi.org/10.1111/j.1574-6941.2011.01218.x
Tamooh, F., Borges, A. V., Meysman, F. J. R., Van Den Meersche, K., Dehairs, F., Merckx, R., & Bouillon, S. (2013). Dynamics of dissolved inorganic carbon and aquatic metabolism in the Tana River basin, Kenya. Biogeosciences, 10, 6911–6928. https://doi.org/10.5194/bg-10-6911-2013
Tranvik, L. J., & Bertilsson, S. (2001). Contrasting effects of solar UV radiation on dissolved organic sources for bacterial growth. Ecology Letters, 4, 458–463. https://doi.org/10.1046/j.1461-0248.2001.00245.x
Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., Dillon, P., Finlay, K., Fortino, K., & Knoll, L. B. (2009). Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography, 54, 2298–2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298
Vikaspedia (2019) Grow out culture of Magur. https://vikaspedia.in/agriculture/fisheries/fish-production/culture-fisheries/culture-techniques-of-fishes/breeding-to-grow-out-of-magur Accessed on Apr. 07 2020
Wadia, D. N. (1981). Geology of India. (p. 508). Tata McGraw-Hill.
Wang, Z. A., Bienvenu, D. J., Mann, P. J., Hoering, K. A., Poulsen, J. R., Spencer, R. G. M., & Holmes, R. M. (2013). Inorganic carbon speciation and fluxes in the Congo River. Geophysical Research Letters, 40, 511–516. https://doi.org/10.1002/grl.50160
Wanninkhof, R. (1992). Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research: Oceans., 97(C5), 7373–7382. https://doi.org/10.1029/92JC00188
Weiss, R. F. (1974). Carbon dioxide in water and seawater the solubility of a non-ideal gas. Marine Chemistry, 2(3), 203–215.
Wen, Z. D., Song, K. S., Zhao, Y., Shao, T. T., & Li, S. J. (2016). Seasonal variability of greenhouse gas emissions in the Urban Lakes in Changchun China. Huan Jing Ke Xue, 37(1), 102–111
Whitfield, P. H., van der Kamp, G., & St-Hilaire, A. (2009). Predicting the partial pressure of carbon dioxide in boreal lakes. Canadian Water Resource Journal, 34, 303–310. https://doi.org/10.4296/cwrj3404415
Wilkinson, G. M., Buelo, C. D., Cole, J. J., & Pace, M. L. (2016). Exogenously produced CO2 doubles the CO2 efflux from three north temperate lakes. Geophysical Research Letters, 43, 1996–2003. https://doi.org/10.1002/2016GL067732
Xiao, Q., Duan, H., Qi, T., Hu, Z., Liu, S., Zhang, M., & Lee, X. (2020). Environmental investments decreased partial pressure of CO2 in a small eutrophic urban lake: Evidence from long-term measurements. Environmental Pollution. https://doi.org/10.1016/j.envpol.2020.114433
Xing, Y., Xie, P., Yang, H., Ni, L., Wang, Y., & Rong, K. (2005). Methane and carbon dioxide fluxes from a shallow hypereutrophic subtropical Lake in China. Atmospheric Environment, 39, 5532–5540. https://doi.org/10.1016/j.atmosenv.2005.06.010
Yang, R., Xu, Z., Liu, S., & Xu, J. Y. (2019). Daily pCO2 and CO2 flux variations in a subtropical mesotrophic shallow lake. Water Research, 153, 29–38. https://doi.org/10.1016/j.watres.2019.01.012
Yvon-Durocher, G., Jones, J. I., Trimmer, M., Woodward, G., & Montoya, J. M. (2010). Warming alters the metabolic balance of ecosystems. Philosophical Transactions of the Royal Socciety Biological Sciences, 365, 2117–2126. https://doi.org/10.1098/rstb.2010.0038
Zhang, Q. Q., Tian, B. H., Zhang, X., Ghulam, A., Fang, C. R., & He, R. (2013). Investigation on characteristics of leachate and concentrated leachate in three landfill leachate treatment plants. Waste Management, 33(11), 2277–2286. https://doi.org/10.1016/j.wasman.2013.07.021
Zhong, J., Li, S. L., Ding, H., Lang, Y., Maberly, S. C., & Xu, S. (2018). Mechanisms controlling dissolved CO2 over-saturation in the Three Gorges Reservoir area. Inland Waters, 8, 148–156. https://doi.org/10.1080/20442041.2018.1457848
Acknowledgements
We thank the Dean, School of Environmental Sciences, Jawaharlal Nehru University for encouragement; Department of Science and Technology, Ministry of Science and Technology, Govt. of India (Purse-Phase-II) and University Grants Commission (UPE-II) for financial support. PJ acknowledges Council of Scientific and Industrial Research, Ministry of Science and Technology, Govt. of India for Senior Research Fellowship. The authors also thank Mr. Himanshu for his valuable help during sampling exercise.
Funding
NSS received funds from Department of Science and Technology, Ministry of Science and Technology, Govt. of India (Purse-Phase-II) and University Grants Commission (UPE-II). PJ received Senior Research Fellowship from Council of Scientific and Industrial Research, Ministry of Science and Technology, Govt. of India (09/263(1033)2014-EMR-I).
Author information
Authors and Affiliations
Contributions
PJ worked on sampling, analysis, interpretation of data, wrote manuscript, prepared tables and figures; NSS supervised the work.
Corresponding author
Ethics declarations
Conflicts of interest
The authors declare that they have no conflict of interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Joshi, P., Siddaiah, N.S. Carbon dioxide dynamics of Bhalswa Lake: a human-impacted urban wetland of Delhi, India. Environ Dev Sustain 23, 18116–18142 (2021). https://doi.org/10.1007/s10668-021-01430-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10668-021-01430-z


