Skip to main content

Advertisement

Log in

Soil carbon stock estimations: methods and a case study of the Maranhão State, Brazil

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Soils feature significant variations in soil carbon stocks through land-use changes, management practices, and intrinsic characteristics. The aim of this study was to estimate the changes in soil carbon stock under different scenarios of land use and agricultural management in the Maranhão State, Brazil, considering the conversion from the conventional agriculture into conservationist management systems. Changes in soil carbon stocks were estimated from the scenario t0 to the current scenario (2010), followed by the adoption of a conservationist scenario by the year 2030. Soils under pasturelands presented the highest average of carbon stocks (62.19 Mg ha−1), followed by forestry lands (61.60 Mg ha−1) and agricultural lands (38.28 Mg ha−1). The conversion of native vegetation into an intensive agricultural use contributed to soil carbon losses of 1.57 Mt C, with pasturelands accounting for 1.36 Mt C and agricultural lands for 0.21 Mt C by 2010. The replacement of intensive agricultural systems into conservationist systems in the current areas has a technical potential for soil carbon sequestration of 0.6 Mt by 2030, with livestock and agricultural lands accounting for 0.54 and 0.03 Mt C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

adapted from Embrapa, 2013)

Fig. 2

(adapted from Hengl et al., 2014)

Fig. 3

adapted from Cooper et al., 2005)

Fig. 4

(adapted from Bernoux et al., 2002), Maranhão State, Brazil

Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amelung, W., Bossio, D., de Vries, W., Kögel-Knabner, I., Lehmann, J., Amundson, R., Bol, R., Collins, C., Lal, R., Leifeld, J., Minasny, B., Pan, G., Paustian, K., Rumpel, C., Sanderman, J., van Groenigen, J. W., Mooney, S., van Wesemael, B., Wander, M., & Chabbi, A. (2020). Towards implementing a global scale soil climate mitigation strategy. Nature Communications, 11, 5427.

    Article  CAS  Google Scholar 

  • Archana, K. (2013). Impact of deforestation on climate change. Journal of Environmental Science, Toxicology And Food Technology, 4, 24–28.

    Article  Google Scholar 

  • Bahia, A. S. R. S., Marques Júnior, J., Panosso, A. R., Camargo, L. A., Siqueira, D. S., Teixeira, D. D. B., & La Scala, N. (2015). Field-scale spatial correlation between contents of iron oxides and CO2 emission in an Oxisol cultivated with sugarcane. Science in Agriculture, 72, 157–166. https://doi.org/10.1590/0103-9016-2014-0142.

    Article  Google Scholar 

  • Bernoux, M., Carvalho, M. C. S., Volkoff, B., & Cerri, C. C. (2002). Brazil’s soil carbono stocks. Soil Science Society of America Journal, 66, 888–896. https://doi.org/10.2136/sssaj2002.8880.

    Article  CAS  Google Scholar 

  • Bossio, D. A., Cook-Patton, S. C., Ellis, P. W., Fargione, J., Sanderman, J., Smith, P., Wood, S., Zomer, R. J., von Unger, M., Emmer, I. M., & Griscom, B. W. (2020). The role of soil carbon in natural climate solutions. Nature Sustainability, 3, 391–398.

    Article  Google Scholar 

  • Bordonal, R. O., Lal, R., De Aguiar, D. A., Figueiredo, E. B., Perillo, L. I., Adami, M., Rudorff, B. F. T., & La Scala, N. (2015). Greenhouse gas balance from cultivation and direct land use change of recently established sugarcane (Saccharum officinarum) plantation in south-central Brazil. Renewable Sustainable Energy Reviews, 52, 547–556. https://doi.org/10.1016/j.rser.2015.07.137.

    Article  CAS  Google Scholar 

  • Brasil Casa Civil. (2012). Decreto nº 7.830, de 17 de outubro de 2012. [acesso em 27 jul 2013]. Available: http://www.planalto.gov.br/ccivil_03/_Ato2011-2014/2012/Decreto/D7830.htm.

  • Brienen, R. J. W., Phillips, O. L., Feldpausch, T. R., Gloor, E., Baker, T. R., Lloyd, J., Lopez-Gonzalez, G., Monteagudo-Mendoza, A., Malhi, Y., Lewis, S. L., Vásquez, R., Martinez, R., Alexiades, M., Álvarez Dávila, E., Alvarez-Loayza, P., Andrade, A., Aragão, L. E. O. C., Araujo-Murakami, A., Arets, E. J. M., … Bonal, D. (2015). Long-term decline of the Amazon carbon sink. Nature, 519, 344–348.

    Article  CAS  Google Scholar 

  • Burney, J.A., Davis, S.J., & Lobell, D.B. (2010). Greenhouse gas mitigation by agricultural intensification. [acesso em 23 fev 2012]. Disponível em: www.pnas.org/cgi/doi/https://doi.org/10.1073/pnas.0914216107.

  • Canadell, J. G., Le Quéré, C., Raupacha, M. R., Field, C. B., Buitenhuisc, E., Ciais, P., Conwayg, T. J., Gillettc, N. P., Houghtonh, R. A., & Marlan, G. (2007). Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy Science USA, 104, 18866–18870. https://doi.org/10.1073/pnas.0702737104.

    Article  Google Scholar 

  • Cerri, C. C., Maia, S. M. F., Galdos, M. V., Cerri, C. E. P., Feigl, B. J., & Bernoux, M. (2009). Brazilian greenhouse gas emissions: The importance of agriculture and livestock. Science in Agriculture, 66, 831–843. https://doi.org/10.1590/S0103-90162009000600017.

    Article  CAS  Google Scholar 

  • Civil. Secretaria de Estado do Meio Ambiente e Recursos Naturais Grupo Permanente de Trabalho Interinstitucional. (2011). Plano de ação para prevenção e controle do desmatamento e das queimadas no Estado do Maranhão. São Luis: Governo do Estado do Maranhão, 2011.

  • Conama. (1997). Resolução nº 238, de 22 de dezembro de 1997—Política Nacional de Controle da Desertificação (in Portuguese). Available online at http://www.mma.gov.br/port/conama/res/res97/res23897.html.

  • Cooper, M., Mendes, L. M. S., Silva, W. L. C., & Sparovek, G. (2005). A national soil profile database for Brazil available to international scientists. Soil Science Society of America Journal, 69, 649–652. https://doi.org/10.2136/sssaj2004.0140.

    Article  CAS  Google Scholar 

  • Dantas, J. S., Marques Júnior, J., Martins Filho, M. V., Resende, J. M. A., Camargo, L. A., & Barbosa, R. S. (2014). Gênese de solos coesos do leste maranhense: Relação solo-paisagem. Revista Brasileira de Ciencia do Solo, 38, 1039–1050. https://doi.org/10.1590/S0100-06832014000400001.

    Article  Google Scholar 

  • Davis, J. C. (1986). Statistics and data analysis in geology. (2nd ed., p. 656p). Wiley.

    Google Scholar 

  • Embrapa. (2013). Empresa Brasileira de Pesquisa Agropecuária. Relatório do Diagnóstico do Macrozoneamento Ecológico-Econômico do Estado do Maranhão. Campinas: Embrapa Monitoramento por Satélite; São Luis: Embrapa Cocais.

  • FAO. (2009). Food and Agriculture Organization of the United Nations. Food and Agriculture Organization of the United Nations statistical database. [acesso em 30 jun 2014]. Disponível em: http://faostat.fao.org/.

  • França, C. G., Del Crossi, M. E., & Marques, V. P. M. A. (2009). Censo agropecuário 2006 e a agricultura familiar no Brasil. (p. 96). MDA.

    Google Scholar 

  • Fuss, S., et al. (2018). Negative emissions—Part 2: costs, potentials and side effects. Environmental Research Letters, 13, 063002.

    Article  Google Scholar 

  • Gomiero, T., Paoletti, M. G., & Pimentel, D. (2008). Critical reviews. Plant Science, 27, 239–254. https://doi.org/10.1080/07352689.2011.554355.

    Article  Google Scholar 

  • Hengl, T., Mendes de Jesus, J., Macmillan, R. A., Batjes, N. H., Heuvelink, G. B. M., Ribeiro, E., Samuel-Rosa, A., Kempen, B., Leenaars, J. G. B., & Walsh, M. G. (2014). SoilGrids 1km—Global soil information based on automated mapping. PLoS One, 9, e105992. https://doi.org/10.1371/journal.pone.0105992.

    Article  Google Scholar 

  • Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., et al. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS One, 12(2), e0169748. https://doi.org/10.1371/journal.pone.0169748.

    Article  CAS  Google Scholar 

  • IMESC. Instituto Maranhense de Estudos Socioeconômicos e Cartográficos. (2010). Anuário Estatístico do Maranhão 2010. São Luís: Governo do Estado do Maranhão

  • IPCC (International Panel on Climate Change). (2003). Good practice guidance for land use land-use change and forestry (GPG-LULUCF). In: Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., & Pipatti, R. (eds). Institute for Global Environmental Strategies (IGES), p. 632.

  • IPCC. (2006). Chapter 2: Generic methodologies applicable to multiple land-use categories. Chapter 3: Mobile combustion. Chapter 5: Cropland Chapter 11: N2O emissions from managed soils, and CO2 emissions from lime and urea application. In H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, & K. Tanabe (Eds.), IPCC guidelines for national greenhouse gas inventories, prepared by the national greenhouse gas inventories programme. IGES: Japan.

    Google Scholar 

  • IPCC. (2019). Climate Change and Land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. In: Shukla, P. R. et al. (eds) https://www.ipcc.ch/site/assets/uploads/2019/11/SRCCL-Full-Report-Compiled-191128.pdf.

  • Isaaks, E. H., & Srivastava, R. M. (1989). Applied geostatistics. (p. 561). Oxford University Press.

    Google Scholar 

  • Jacomine, P. T. K., Almeida, J. C., & Medeiros, L. A. R. (1986). Levantamento exploratório-reconhecimento de solos do Estado do Maranhão. (p. 406). Embrapa-SNLCS/SUDENE-DRN.

    Google Scholar 

  • La Scala, N., Marques Júnior, J., Pereira, G. T., & Cora, J. E. (2000a). Short-term temporal changes in the spatial variability model of CO2 emissions from a Brazilian bare soil. Soil Biology and Biochemistry, 32, 1469–1473. https://doi.org/10.1016/S0038-0717(00)00051-1.

    Article  Google Scholar 

  • La Scala, N., Marques Júnior, J., Pereira, G. T., & Cora, J. E. (2000b). Carbon dioxide emission related to chemical properties of a tropical bare soil. Soil Biology and Biochemistry, 32, 1459–1462. https://doi.org/10.1016/S0038-0717(00)00053-5.

    Article  Google Scholar 

  • La Scala, N., Bolonhezi, D., & Pereira, G. T. (2006). Short-term soil CO2 emission after conventional and reduced tillage of a no-till sugar cane area in southern Brazil. Soil and Tillage Research, 91, 244–2482006. https://doi.org/10.1016/j.still.2005.11.012.

    Article  Google Scholar 

  • La Scala, N., De Figueiredo, E. B., & Panosso, A. R. (2012). On the mitigation potential associated with atmospheric CO2 sequestration and soil carbon accumulation in major Brazilian agricultural activities. Brazilian Journal of Biology, 2012(72), 775–785. https://doi.org/10.1590/S1519-69842012000400012.

    Article  Google Scholar 

  • Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623–1627. https://doi.org/10.1126/science.1097396.

    Article  CAS  Google Scholar 

  • Leal, F. T., França, A. B. C., Siqueira, D. S., Teixeira, D. D. B., & La Scala, N. (2015). Characterization of potential CO2 emissions in agricultural areas using magnetic susceptibility. Science in Agriculture, 7, 535–539. https://doi.org/10.1590/0103-9016-2014-0420.

    Article  Google Scholar 

  • Lybbert, T. J., & Sumner, D. A. (2012). Agricultural technologies for climate change in developing countries: Policy options for innovation and technology diffusion. Food Policy, 37, 114–123. https://doi.org/10.1016/j.foodpol.2011.11.001.

    Article  Google Scholar 

  • Lima, E. A. M., & Leite, J. F. (1978). Projeto estudo global dos recursos minerais da bacia sedimentar do Parnaíba: integração geológico-metalogenética. (p. 190). DNPM/CPRM.

    Google Scholar 

  • Lima, H. V., Silva, A. P., Jacomine, P. T. K., Romero, R. E., & Libardi, P. L. (2004). Identificação e caracterização de solos coesos no Estado do Ceará. Revista Brasileira de Ciencia do Solo, 28, 467–476. https://doi.org/10.1590/S0100-06832004000300008.

    Article  CAS  Google Scholar 

  • Lima Neto, J. Á., Ribeiro, M. R., Corrêa, M. M., Souza Júnior, V. S., Lima, J. F. W. F., & Ferreira, R. F. A. L. (2009). Caracterização e gênese do caráter coeso em Latossolos Amarelos e Argissolos dos Tabuleiros Costeiros do Estado de Alagoas. Revista Brasileira de Ciencia do Solo, 33, 1001–1011. https://doi.org/10.1590/S0100-06832009000400024.

    Article  CAS  Google Scholar 

  • Oyama, M. D., & Nobre, C. A. (2004). Climatic consequences of a largescale desertification in northeast Brazil: A GCM simulation study. Journal of Climate, 17, 3203–3213.

    Article  Google Scholar 

  • Martins, F. C. (2014). Relação solo-vegetação em área de cerrado no nordeste do Maranhão, Brasil. [tese] Jaboticabal: Universidade Estadual Paulista, Jaboticabal

  • Mendes, T. J., Nogueira, J. Á., Araújo, E. P., Lopes, J. R., Bezerra, D. S., & Sena, D. B. (2014). Areas susceptible to desertification the state of Maranhão. In: Anais da 5º. International Disaster and Risk Conference Integrative Risk Management—The Role of Science, Technology and Practice [CD-ROM]; Davos. Davos: Global Risk Forum GRF

  • Mulder, L., Lacoste, M., Richer-de-Forges, A. C., Martin, M. P., & Arrouays, D. (2016). National versus global modelling the 3D distribution of soil organic carbon in mainland France. Geoderma, 263, 16–34.

    Article  CAS  Google Scholar 

  • NuGeo UEMA—Núcleo Geoambiental da Universidade Estadual do Maranhão, Laboratório de Meteorologia. (2019). Available: https://www.nugeo.uema.br/?page_id=111. Acess: 24 dezember, 2019.

  • Niels, H. B. (2018). Technologically achievable soil organic carbon sequestration in world croplands and grasslands. Land Degradation Development, 30, 25–32.

    Google Scholar 

  • Padarian, J., Minasny, J. P. B., & McBratney, A. B. (2015). Using Google’s cloud-based platform for digital soil mapping. Computers and Geosciences, 83, 80–88. https://doi.org/10.1016/j.cageo.2015.06.023.

    Article  Google Scholar 

  • Pittelkow, C. M., Liang, X., Linquist, B. A., Groenigen, K. J. V., Lee, J., Lundy, M. E., Gestel, N. V., Six, J., Venterea, R. T., & Kessel, C. V. (2014). Productivity limits and potentials of the principles of conservation agriculture. Nature, 517, 365–368. https://doi.org/10.1038/nature13809.

    Article  CAS  Google Scholar 

  • Quinton, J. N., Govers, G., Oost, K. V., & Bardgett, R. D. (2010). The impact of agricultural soil erosion on biogeochemical cycling. Nature Geoscience, 3, 311–314. https://doi.org/10.1038/ngeo838.

    Article  CAS  Google Scholar 

  • Resende, J. M. A., Marques Júnior, J., Martins Filho, M. V., Dantas, J. S., Siqueira, D. S., & Teixeira, D. D. B. (2014). Variabilidade espacial de atributos de solos coesos do leste maranhense. Revista Brasileira de Ciencia do Solo, 38, 1077–1090. https://doi.org/10.1590/S0100-06832014000400004.

    Article  Google Scholar 

  • Rockstrom, J. A. (2009). Safe operating space for humanity. Nature, 461, 472–475. https://doi.org/10.1038/461472a.

    Article  CAS  Google Scholar 

  • Roscoe, R., Buurman, P., & Velthorst, E. J. (2000). Disruption of soil aggregates by varied amounts of ultrasonic energy in fractionation of organic matter of a clay latosol: Carbon, nitrogen, and δ13C distribution in particle-size fractions. European Journal of Soil Science, 51, 445–454. https://doi.org/10.1046/j.1365-2389.2000.00321.x.

    Article  Google Scholar 

  • Sanderman, J., Hengl, T., & Fiske, G. J. (2017). Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy Science USA, 114, 9575–9580.

    Article  CAS  Google Scholar 

  • Silva, J. E., Lemainski, J., & Resck, D. V. S. (1994). Perdas de matéria orgânica e suas relações com a capacidade de troca catiônica em solos da região de cerrados do oeste baiano. Revista Brasileira Cienca Solo, 18, 541–547.

    CAS  Google Scholar 

  • Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., Scholes, B., & Sirotenko, O. (2007). Agriculture. In B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, & L. A. Meyer (Eds.), Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press.

    Google Scholar 

  • Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., & Smith, J. (2008). Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363, 789–813. https://doi.org/10.1098/rstb.2007.2184.

    Article  CAS  Google Scholar 

  • Stella, A. (2011). Plano de prevenção e controle do desmatamento e queimadas do Maranhão. Available: http://www.sema.ma.gov.br/pdf/Plano%20Estadual%20de%20Combate%20ao%20Desmatamento.pdf. [acess: 12 maio 2015].

  • Stokmann, U., Padarian, J., McBratney, A., Minasny, B., Montanarella, L., Hong, S. Y., Rawlins, B. G., & Field, D. J. (2015). Global soil organic carbon assessment. Global Food Security, 6, 9–16. https://doi.org/10.1016/j.gfs.2015.07.00.

    Article  Google Scholar 

  • UNFCCC. (2006). National reports. united nations frameworks convention on climate change. [acesso em 20 mar 2012]. Disponível em: http://unfccc.int/national_reports/items/1408.php.

  • Veldkamp, E. (1994). Organic carbon turnover in three tropical soils under pasture after deforestation. Soil Science Society of America Journal, 58, 175–180. https://doi.org/10.2136/sssaj1994.03615995005800010025x.

    Article  Google Scholar 

  • Ward, D. S., Mahowald, N. M., & Kloster, S. (2014). Potential climate forcing of land use and land cover change. Atmospheric Chemistry and Physics, 14, 12701–12724. https://doi.org/10.5194/acp-14-12701-2014.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mara Regina Moitinho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendes, T.J., Siqueira, D.S., de Figueiredo, E.B. et al. Soil carbon stock estimations: methods and a case study of the Maranhão State, Brazil. Environ Dev Sustain 23, 16410–16427 (2021). https://doi.org/10.1007/s10668-021-01351-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01351-x

Keywords

Navigation