Abstract
Soils feature significant variations in soil carbon stocks through land-use changes, management practices, and intrinsic characteristics. The aim of this study was to estimate the changes in soil carbon stock under different scenarios of land use and agricultural management in the Maranhão State, Brazil, considering the conversion from the conventional agriculture into conservationist management systems. Changes in soil carbon stocks were estimated from the scenario t0 to the current scenario (2010), followed by the adoption of a conservationist scenario by the year 2030. Soils under pasturelands presented the highest average of carbon stocks (62.19 Mg ha−1), followed by forestry lands (61.60 Mg ha−1) and agricultural lands (38.28 Mg ha−1). The conversion of native vegetation into an intensive agricultural use contributed to soil carbon losses of 1.57 Mt C, with pasturelands accounting for 1.36 Mt C and agricultural lands for 0.21 Mt C by 2010. The replacement of intensive agricultural systems into conservationist systems in the current areas has a technical potential for soil carbon sequestration of 0.6 Mt by 2030, with livestock and agricultural lands accounting for 0.54 and 0.03 Mt C, respectively.

adapted from Embrapa, 2013)

(adapted from Hengl et al., 2014)

adapted from Cooper et al., 2005)

(adapted from Bernoux et al., 2002), Maranhão State, Brazil


Similar content being viewed by others
References
Amelung, W., Bossio, D., de Vries, W., Kögel-Knabner, I., Lehmann, J., Amundson, R., Bol, R., Collins, C., Lal, R., Leifeld, J., Minasny, B., Pan, G., Paustian, K., Rumpel, C., Sanderman, J., van Groenigen, J. W., Mooney, S., van Wesemael, B., Wander, M., & Chabbi, A. (2020). Towards implementing a global scale soil climate mitigation strategy. Nature Communications, 11, 5427.
Archana, K. (2013). Impact of deforestation on climate change. Journal of Environmental Science, Toxicology And Food Technology, 4, 24–28.
Bahia, A. S. R. S., Marques Júnior, J., Panosso, A. R., Camargo, L. A., Siqueira, D. S., Teixeira, D. D. B., & La Scala, N. (2015). Field-scale spatial correlation between contents of iron oxides and CO2 emission in an Oxisol cultivated with sugarcane. Science in Agriculture, 72, 157–166. https://doi.org/10.1590/0103-9016-2014-0142.
Bernoux, M., Carvalho, M. C. S., Volkoff, B., & Cerri, C. C. (2002). Brazil’s soil carbono stocks. Soil Science Society of America Journal, 66, 888–896. https://doi.org/10.2136/sssaj2002.8880.
Bossio, D. A., Cook-Patton, S. C., Ellis, P. W., Fargione, J., Sanderman, J., Smith, P., Wood, S., Zomer, R. J., von Unger, M., Emmer, I. M., & Griscom, B. W. (2020). The role of soil carbon in natural climate solutions. Nature Sustainability, 3, 391–398.
Bordonal, R. O., Lal, R., De Aguiar, D. A., Figueiredo, E. B., Perillo, L. I., Adami, M., Rudorff, B. F. T., & La Scala, N. (2015). Greenhouse gas balance from cultivation and direct land use change of recently established sugarcane (Saccharum officinarum) plantation in south-central Brazil. Renewable Sustainable Energy Reviews, 52, 547–556. https://doi.org/10.1016/j.rser.2015.07.137.
Brasil Casa Civil. (2012). Decreto nº 7.830, de 17 de outubro de 2012. [acesso em 27 jul 2013]. Available: http://www.planalto.gov.br/ccivil_03/_Ato2011-2014/2012/Decreto/D7830.htm.
Brienen, R. J. W., Phillips, O. L., Feldpausch, T. R., Gloor, E., Baker, T. R., Lloyd, J., Lopez-Gonzalez, G., Monteagudo-Mendoza, A., Malhi, Y., Lewis, S. L., Vásquez, R., Martinez, R., Alexiades, M., Álvarez Dávila, E., Alvarez-Loayza, P., Andrade, A., Aragão, L. E. O. C., Araujo-Murakami, A., Arets, E. J. M., … Bonal, D. (2015). Long-term decline of the Amazon carbon sink. Nature, 519, 344–348.
Burney, J.A., Davis, S.J., & Lobell, D.B. (2010). Greenhouse gas mitigation by agricultural intensification. [acesso em 23 fev 2012]. Disponível em: www.pnas.org/cgi/doi/https://doi.org/10.1073/pnas.0914216107.
Canadell, J. G., Le Quéré, C., Raupacha, M. R., Field, C. B., Buitenhuisc, E., Ciais, P., Conwayg, T. J., Gillettc, N. P., Houghtonh, R. A., & Marlan, G. (2007). Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy Science USA, 104, 18866–18870. https://doi.org/10.1073/pnas.0702737104.
Cerri, C. C., Maia, S. M. F., Galdos, M. V., Cerri, C. E. P., Feigl, B. J., & Bernoux, M. (2009). Brazilian greenhouse gas emissions: The importance of agriculture and livestock. Science in Agriculture, 66, 831–843. https://doi.org/10.1590/S0103-90162009000600017.
Civil. Secretaria de Estado do Meio Ambiente e Recursos Naturais Grupo Permanente de Trabalho Interinstitucional. (2011). Plano de ação para prevenção e controle do desmatamento e das queimadas no Estado do Maranhão. São Luis: Governo do Estado do Maranhão, 2011.
Conama. (1997). Resolução nº 238, de 22 de dezembro de 1997—Política Nacional de Controle da Desertificação (in Portuguese). Available online at http://www.mma.gov.br/port/conama/res/res97/res23897.html.
Cooper, M., Mendes, L. M. S., Silva, W. L. C., & Sparovek, G. (2005). A national soil profile database for Brazil available to international scientists. Soil Science Society of America Journal, 69, 649–652. https://doi.org/10.2136/sssaj2004.0140.
Dantas, J. S., Marques Júnior, J., Martins Filho, M. V., Resende, J. M. A., Camargo, L. A., & Barbosa, R. S. (2014). Gênese de solos coesos do leste maranhense: Relação solo-paisagem. Revista Brasileira de Ciencia do Solo, 38, 1039–1050. https://doi.org/10.1590/S0100-06832014000400001.
Davis, J. C. (1986). Statistics and data analysis in geology. (2nd ed., p. 656p). Wiley.
Embrapa. (2013). Empresa Brasileira de Pesquisa Agropecuária. Relatório do Diagnóstico do Macrozoneamento Ecológico-Econômico do Estado do Maranhão. Campinas: Embrapa Monitoramento por Satélite; São Luis: Embrapa Cocais.
FAO. (2009). Food and Agriculture Organization of the United Nations. Food and Agriculture Organization of the United Nations statistical database. [acesso em 30 jun 2014]. Disponível em: http://faostat.fao.org/.
França, C. G., Del Crossi, M. E., & Marques, V. P. M. A. (2009). Censo agropecuário 2006 e a agricultura familiar no Brasil. (p. 96). MDA.
Fuss, S., et al. (2018). Negative emissions—Part 2: costs, potentials and side effects. Environmental Research Letters, 13, 063002.
Gomiero, T., Paoletti, M. G., & Pimentel, D. (2008). Critical reviews. Plant Science, 27, 239–254. https://doi.org/10.1080/07352689.2011.554355.
Hengl, T., Mendes de Jesus, J., Macmillan, R. A., Batjes, N. H., Heuvelink, G. B. M., Ribeiro, E., Samuel-Rosa, A., Kempen, B., Leenaars, J. G. B., & Walsh, M. G. (2014). SoilGrids 1km—Global soil information based on automated mapping. PLoS One, 9, e105992. https://doi.org/10.1371/journal.pone.0105992.
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., et al. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS One, 12(2), e0169748. https://doi.org/10.1371/journal.pone.0169748.
IMESC. Instituto Maranhense de Estudos Socioeconômicos e Cartográficos. (2010). Anuário Estatístico do Maranhão 2010. São Luís: Governo do Estado do Maranhão
IPCC (International Panel on Climate Change). (2003). Good practice guidance for land use land-use change and forestry (GPG-LULUCF). In: Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., & Pipatti, R. (eds). Institute for Global Environmental Strategies (IGES), p. 632.
IPCC. (2006). Chapter 2: Generic methodologies applicable to multiple land-use categories. Chapter 3: Mobile combustion. Chapter 5: Cropland Chapter 11: N2O emissions from managed soils, and CO2 emissions from lime and urea application. In H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, & K. Tanabe (Eds.), IPCC guidelines for national greenhouse gas inventories, prepared by the national greenhouse gas inventories programme. IGES: Japan.
IPCC. (2019). Climate Change and Land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. In: Shukla, P. R. et al. (eds) https://www.ipcc.ch/site/assets/uploads/2019/11/SRCCL-Full-Report-Compiled-191128.pdf.
Isaaks, E. H., & Srivastava, R. M. (1989). Applied geostatistics. (p. 561). Oxford University Press.
Jacomine, P. T. K., Almeida, J. C., & Medeiros, L. A. R. (1986). Levantamento exploratório-reconhecimento de solos do Estado do Maranhão. (p. 406). Embrapa-SNLCS/SUDENE-DRN.
La Scala, N., Marques Júnior, J., Pereira, G. T., & Cora, J. E. (2000a). Short-term temporal changes in the spatial variability model of CO2 emissions from a Brazilian bare soil. Soil Biology and Biochemistry, 32, 1469–1473. https://doi.org/10.1016/S0038-0717(00)00051-1.
La Scala, N., Marques Júnior, J., Pereira, G. T., & Cora, J. E. (2000b). Carbon dioxide emission related to chemical properties of a tropical bare soil. Soil Biology and Biochemistry, 32, 1459–1462. https://doi.org/10.1016/S0038-0717(00)00053-5.
La Scala, N., Bolonhezi, D., & Pereira, G. T. (2006). Short-term soil CO2 emission after conventional and reduced tillage of a no-till sugar cane area in southern Brazil. Soil and Tillage Research, 91, 244–2482006. https://doi.org/10.1016/j.still.2005.11.012.
La Scala, N., De Figueiredo, E. B., & Panosso, A. R. (2012). On the mitigation potential associated with atmospheric CO2 sequestration and soil carbon accumulation in major Brazilian agricultural activities. Brazilian Journal of Biology, 2012(72), 775–785. https://doi.org/10.1590/S1519-69842012000400012.
Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623–1627. https://doi.org/10.1126/science.1097396.
Leal, F. T., França, A. B. C., Siqueira, D. S., Teixeira, D. D. B., & La Scala, N. (2015). Characterization of potential CO2 emissions in agricultural areas using magnetic susceptibility. Science in Agriculture, 7, 535–539. https://doi.org/10.1590/0103-9016-2014-0420.
Lybbert, T. J., & Sumner, D. A. (2012). Agricultural technologies for climate change in developing countries: Policy options for innovation and technology diffusion. Food Policy, 37, 114–123. https://doi.org/10.1016/j.foodpol.2011.11.001.
Lima, E. A. M., & Leite, J. F. (1978). Projeto estudo global dos recursos minerais da bacia sedimentar do Parnaíba: integração geológico-metalogenética. (p. 190). DNPM/CPRM.
Lima, H. V., Silva, A. P., Jacomine, P. T. K., Romero, R. E., & Libardi, P. L. (2004). Identificação e caracterização de solos coesos no Estado do Ceará. Revista Brasileira de Ciencia do Solo, 28, 467–476. https://doi.org/10.1590/S0100-06832004000300008.
Lima Neto, J. Á., Ribeiro, M. R., Corrêa, M. M., Souza Júnior, V. S., Lima, J. F. W. F., & Ferreira, R. F. A. L. (2009). Caracterização e gênese do caráter coeso em Latossolos Amarelos e Argissolos dos Tabuleiros Costeiros do Estado de Alagoas. Revista Brasileira de Ciencia do Solo, 33, 1001–1011. https://doi.org/10.1590/S0100-06832009000400024.
Oyama, M. D., & Nobre, C. A. (2004). Climatic consequences of a largescale desertification in northeast Brazil: A GCM simulation study. Journal of Climate, 17, 3203–3213.
Martins, F. C. (2014). Relação solo-vegetação em área de cerrado no nordeste do Maranhão, Brasil. [tese] Jaboticabal: Universidade Estadual Paulista, Jaboticabal
Mendes, T. J., Nogueira, J. Á., Araújo, E. P., Lopes, J. R., Bezerra, D. S., & Sena, D. B. (2014). Areas susceptible to desertification the state of Maranhão. In: Anais da 5º. International Disaster and Risk Conference Integrative Risk Management—The Role of Science, Technology and Practice [CD-ROM]; Davos. Davos: Global Risk Forum GRF
Mulder, L., Lacoste, M., Richer-de-Forges, A. C., Martin, M. P., & Arrouays, D. (2016). National versus global modelling the 3D distribution of soil organic carbon in mainland France. Geoderma, 263, 16–34.
NuGeo UEMA—Núcleo Geoambiental da Universidade Estadual do Maranhão, Laboratório de Meteorologia. (2019). Available: https://www.nugeo.uema.br/?page_id=111. Acess: 24 dezember, 2019.
Niels, H. B. (2018). Technologically achievable soil organic carbon sequestration in world croplands and grasslands. Land Degradation Development, 30, 25–32.
Padarian, J., Minasny, J. P. B., & McBratney, A. B. (2015). Using Google’s cloud-based platform for digital soil mapping. Computers and Geosciences, 83, 80–88. https://doi.org/10.1016/j.cageo.2015.06.023.
Pittelkow, C. M., Liang, X., Linquist, B. A., Groenigen, K. J. V., Lee, J., Lundy, M. E., Gestel, N. V., Six, J., Venterea, R. T., & Kessel, C. V. (2014). Productivity limits and potentials of the principles of conservation agriculture. Nature, 517, 365–368. https://doi.org/10.1038/nature13809.
Quinton, J. N., Govers, G., Oost, K. V., & Bardgett, R. D. (2010). The impact of agricultural soil erosion on biogeochemical cycling. Nature Geoscience, 3, 311–314. https://doi.org/10.1038/ngeo838.
Resende, J. M. A., Marques Júnior, J., Martins Filho, M. V., Dantas, J. S., Siqueira, D. S., & Teixeira, D. D. B. (2014). Variabilidade espacial de atributos de solos coesos do leste maranhense. Revista Brasileira de Ciencia do Solo, 38, 1077–1090. https://doi.org/10.1590/S0100-06832014000400004.
Rockstrom, J. A. (2009). Safe operating space for humanity. Nature, 461, 472–475. https://doi.org/10.1038/461472a.
Roscoe, R., Buurman, P., & Velthorst, E. J. (2000). Disruption of soil aggregates by varied amounts of ultrasonic energy in fractionation of organic matter of a clay latosol: Carbon, nitrogen, and δ13C distribution in particle-size fractions. European Journal of Soil Science, 51, 445–454. https://doi.org/10.1046/j.1365-2389.2000.00321.x.
Sanderman, J., Hengl, T., & Fiske, G. J. (2017). Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy Science USA, 114, 9575–9580.
Silva, J. E., Lemainski, J., & Resck, D. V. S. (1994). Perdas de matéria orgânica e suas relações com a capacidade de troca catiônica em solos da região de cerrados do oeste baiano. Revista Brasileira Cienca Solo, 18, 541–547.
Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., Scholes, B., & Sirotenko, O. (2007). Agriculture. In B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, & L. A. Meyer (Eds.), Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press.
Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., & Smith, J. (2008). Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363, 789–813. https://doi.org/10.1098/rstb.2007.2184.
Stella, A. (2011). Plano de prevenção e controle do desmatamento e queimadas do Maranhão. Available: http://www.sema.ma.gov.br/pdf/Plano%20Estadual%20de%20Combate%20ao%20Desmatamento.pdf. [acess: 12 maio 2015].
Stokmann, U., Padarian, J., McBratney, A., Minasny, B., Montanarella, L., Hong, S. Y., Rawlins, B. G., & Field, D. J. (2015). Global soil organic carbon assessment. Global Food Security, 6, 9–16. https://doi.org/10.1016/j.gfs.2015.07.00.
UNFCCC. (2006). National reports. united nations frameworks convention on climate change. [acesso em 20 mar 2012]. Disponível em: http://unfccc.int/national_reports/items/1408.php.
Veldkamp, E. (1994). Organic carbon turnover in three tropical soils under pasture after deforestation. Soil Science Society of America Journal, 58, 175–180. https://doi.org/10.2136/sssaj1994.03615995005800010025x.
Ward, D. S., Mahowald, N. M., & Kloster, S. (2014). Potential climate forcing of land use and land cover change. Atmospheric Chemistry and Physics, 14, 12701–12724. https://doi.org/10.5194/acp-14-12701-2014.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mendes, T.J., Siqueira, D.S., de Figueiredo, E.B. et al. Soil carbon stock estimations: methods and a case study of the Maranhão State, Brazil. Environ Dev Sustain 23, 16410–16427 (2021). https://doi.org/10.1007/s10668-021-01351-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10668-021-01351-x
