Skip to main content

Advertisement

Log in

The geomorphology and ecosystem service economic value baselines of tributary watersheds in Malaysia

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

This study presents how a cluster of tributary watersheds was evaluated for geomorphology and ecosystem service economic value baselines. Tributary watersheds, although small, were focused herein as they are practical for community-based conservation. Based on the Market-Price Method, the watersheds were estimated to be worth USD49.59 ha−1 year−1 at the time of this study and USD58.13 ha−1 year−1 in 2026. The watersheds were able to meet water demand of 20.94 megalitre day−1 required by the 93,084 local populations during the worst-case scenario induced by a peak El Niño and Southern Oscillation event in 2016. Collectively, the watersheds were contributing 703.87 megalitre day−1; thus, water shortages are not expected in near future, unless if they are compromised. The data acquired are also compared with studies elsewhere, and some insights on other baseline metrics, risk factors and humanizing watershed conservation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Source: Adapted from MNRE (2011) and data collected by the authors in 2016

Fig. 5

Source: Combined data from McIntosh (2014), SPAN (2016) and PUB (2017)

Fig. 6
Fig. 7

Source Department of Irrigation and Drainage (2017)

Similar content being viewed by others

References

  • Abdul Rahim, N. (1998). Water yield changes after forest conversion to agricultural landuse in Peninsular Malaysia. Journal of Tropical Forest Science, 1, 67–84.

    Google Scholar 

  • Abdullah, K. (2002). Integrated river basin management. In N. W. Chan (Ed.), Rivers: Towards sustainable development. Penang: Penerbit Universiti Sains Malaysia.

    Google Scholar 

  • Akasah, Z. A., & Doraisamy, S. V. (2015). Malaysia flood: Impacts and factors contributing towards the restoration of damages. Journal of Scientific Research and Development, 2(14), 53–59.

    Google Scholar 

  • Al-Saud, M. (2009). Morphometric analysis of Wadi Aurnah drainage system, Western Arabian Peninsula. The Open Hydrology Journal, 3, 1–10.

    Google Scholar 

  • Anderson, D. L., Ames, D. P., & Yang, P. (2014). Quantitative methods for comparing different polyline stream network models. Journal of Geographic Information System, 6, 88–98.

    Article  Google Scholar 

  • Angeli, M. G., Pasuto, A., & Silvano, S. (2000). A critical review of landslide monitoring experiences. Engineering Geology, 55(3), 133–147.

    Article  Google Scholar 

  • Austin, D., Cerman, G., Heywood, T., Marshall, R., Refling, K., & Van Patter, L. (2010). Valuing natural capital and ecosystem services. Ontario, Canada: Muskoka Watershed Council.

    Google Scholar 

  • Balint, P. J. (2006). Improving community-based conservation near protected areas: the importance of development variables. Environmental Management, 38(1), 137–148.

    Article  Google Scholar 

  • Barnard, P. L., Owen, L. A., Sharma, M. C., & Finkel, R. C. (2001). Natural and human-induced landsliding in the Garhwal Himalaya of northern India. Geomorphology, 40, 21–35.

    Article  Google Scholar 

  • Barnston, A. G., Chelliah, M., & Goldenberg, S. B. (1997). Documentation of a highly ENSO-related SST region in the equatorial Pacific. Atmosphere-Ocean, 35, 367–383.

    Article  Google Scholar 

  • Barton, D. N., Traaholt, N. V., & Blumentrath, S. (2015). Materials and methods appendix for valuation of ecosystem services of green infrastructure in Oslo. Oslo: Norwegian Institute for Nature Research.

    Google Scholar 

  • Bhatta, L. D., Khadgi, A., Rai, R. K., Tamang, B., Timalsina, K., & Wahid, S. (2017). Designing community-based payment scheme for ecosystem services: a case from Koshi Hills, Nepal. Environment, Development and Sustainability, 20(4), 1831–1848.

    Article  Google Scholar 

  • Bello, I. E., Adzandeh, A., & Rilwani, M. L. (2014). Geoinformatics characterisation of drainage systems within Muya watershed in the Upper Niger Drainage Basin, Nigeria. International Journal of Research in Earth and Environmental Sciences, 2(3), 18–36.

    Google Scholar 

  • Biswas, R., & Chakraborty, S. (2016). Watershed prioritization based on geo-morphometry and land use parameters—An approach to watershed development using remote sensing and GIS, Neora watershed, Darjeeling and Jalpaiguri Districts, West Bengal, India. IOSR Journal of Applied Geology and Geophysics, 4, 2321–2990.

    Google Scholar 

  • Brass, R. (1990). Hydrology: An introduction to hydrologic science. Reading: Addison-Wesley.

    Google Scholar 

  • Brodie, R., Sundaram, B., Tottenham, R., Hostetler, S., & Ransley, T. (2007). An overview of tools for assessing groundwater–surface water connectivity. Canberra: Bureau of Rural Sciences, Australian Government.

    Google Scholar 

  • Caumon, G., Collon-Drouaillet, P., Carlier, Le., de Veslud, C., Sausse, J., & Visuer, S. (2009). Teacher’s aide: 3D modelling of geological structures. Mathematical Geosciences, 41(9), 927–945.

    Article  CAS  Google Scholar 

  • Chan, N. W. (2004). A critical review of malaysia’s accomplishment on water resources management under AGENDA 21. Malaysian Journal of Environmental Management, 5, 55–78.

    Google Scholar 

  • Chan, N. W. (2005). Sustainable management of rivers in Malaysia: Involving all stakeholders. International Journal of River Basin Management, 3(3), 147–162.

    Article  Google Scholar 

  • Chan, N. W. (2009). Issues and challenges in water governance in Malaysia. Journal of Environmental Health Science and Engineering, 6(3), 143–152.

    Google Scholar 

  • Chang, C. L., Lo, S. L., & Huang, S. M. (2009). Optimal strategies for best management practice placement in a synthetic watershed. Environmental Monitoring and Assessment, 153(1–4), 359–364.

    Article  CAS  Google Scholar 

  • Chen, H., & Lee, C. F. (2003). A dynamic model for rainfall-induced landslides on natural slopes. Geomorphology, 51, 269–288.

    Article  Google Scholar 

  • Chimeli, A. B., Boyd, R. G., & Adams, D. M. (2011). International timber markets and tropical deforestation: the evidence from prices. Applied Economics, 44(10), 1303–1314.

    Article  Google Scholar 

  • Chorley, R. J., Schumm, S. A., & Sugden, D. E. (1984). Geomorphology. London: Methuen.

    Google Scholar 

  • Clarke, J. I. (1966). Morphometry from maps. New York: Elsevier.

    Google Scholar 

  • Costanza, R., Wilson, M., Troy, A., Voinov, A., Liu, S., & D’Agostino, J. (2006). The value of New Jersey’s ecosystem services and natural capital. Vermont: Gund Institute for Ecological Economics.

    Google Scholar 

  • Davenport, M. A., Leahy, J. E., Anderson, D. H., & Jakes, P. J. (2007). Building trust in natural resource management within local communities: A case study of the Midewin National Tallgrass Prairie. Environmental Management, 39, 353–368.

    Article  Google Scholar 

  • Department of Irrigation and Drainage, Malaysia. (2017). Online hydrological data. http://infobanjir.water.gov.my/real_time.cfm. Accessed 3 January 2017.

  • Department of Statistics, Malaysia. (2010). Population and housing census of Malaysia 2010. https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=117&bul_id=MDMxdHZjWTk1SjFzTzNkRXYzcVZjdz09&menu_id=L0pheU43NWJwRWVSZklWdzQ4TlhUUT09. Accessed 3 January 2017.

  • Department of Statistics, Malaysia. (2020). Current population estimates 2018–2019. https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=155&bul_id=aWJZRkJ4UedKcUZpT2tVT090Snpydz09&menu_id=L0pheU43NWJwRWVSZklWdzQ4TlhUUT09. Accessed 27 December 2020.

  • Dikpal, R. L., Renuka Prasad, T. J., & Satish, K. (2017). Evaluation of morphometric parameters derived from Cartosat-1 DEM using remote sensing and GIS techniques for Budigere Amanikere watershed, Dakshina Pinakini Basin, Karnatakam India. Applied Water Science, 7(8), 4399–4414.

    Article  Google Scholar 

  • Distefano, T., & Kelly, S. (2017). Are we in deep water? Water scarcity and its limits to economic growth. Ecological Economics, 142, 130–147.

    Article  Google Scholar 

  • Dunne, T., & Leopold, L. (1978). Water in environmental planning. San Francisco: W.H. Freeman.

    Google Scholar 

  • Eagleson, P. S. (1970). Dynamic hydrology. USA: McGraw-Hill.

    Google Scholar 

  • Elosegi, A., & Sabater, S. (2013). Effects of hydromorphological impacts on river ecosystem functioning: A review and suggestions for assessing ecological impacts. Hydrobiologia, 712, 129–143.

    Article  Google Scholar 

  • Environment Protection Agency, US. (2016). Water: Monitoring and assessment. https://archive.epa.gov/water/archive/web/html/vms51.html. Accessed 14 March 2017.

  • Everard, M., & Quinn, N. (2015). Realizing the value of fluvial geomorphology. International Journal of River Basin Management, 13(4), 487–500.

    Article  Google Scholar 

  • Ewing, J., & Domondon, K. (2016). Drought, pollution and Johor’s growing water needs. Singapore: ISEAS—Yusof Ishak Institute.

    Google Scholar 

  • França da Silva, J., Santos, L., & Oka-Fiori, C. (2019). Spatial correlation analysis between topographic parameters for defining the geomorphometric diversity index: application in the environmental protection area of the Serra da Esperança (state of Paraná, Brazil). Environmental Earth Sciences, 78, 356.

    Article  Google Scholar 

  • Feng, Y., Luo, G., Lu, L., Zhou, D., Han, Q., Wenqiang, X., et al. (2011). Effects of land use change on landscape pattern of the Manas River watershed in Xinjiang. China. Environmental Earth Sciences, 64(8), 2067–2077.

    Article  Google Scholar 

  • Feng, D., Wu, W., Liang, L., Li, L., & Zhao, G. (2018). Payments for watershed ecosystem services: mechanism, progress and challenges. Ecosystem Health and Sustainability, 4(1), 13–28.

    Article  Google Scholar 

  • Florinsky, I. V. (2017). An illustrated introduction to general geomorphometry. Progress in Physical Geography: Earth and Environment, 41(6), 723–752.

    Article  Google Scholar 

  • Flotemersch, J. E., Leibowitz, S. G., Hill, R. A., Stoddard, J. L., Thoms, M. C., & Tharme, R. E. (2016). A watershed integrity definition and assessment approach to support strategic management of watersheds. River Research and Applications, 32(7), 1654–1671.

    Article  Google Scholar 

  • Ghazoul, J. (2007). Placing humans at the heart of conservation. Biotropica, 39, 565–566.

    Article  Google Scholar 

  • Hamzah, H. (2013). The Orang Asli customary land: issues and challenges. Journal of Administrative Science, 10(1). http://jas.uitm.edu.my/images/2013_JUNE/4.pdf. Accessed 21 May 2017.

  • Hill, B. H., Kolka, R. K., McCormick, F. H., & Starry, M. A. (2014). A synoptic survey of ecosystem services from headwater catchments in the United States. Ecosystem Services, 7, 106–115.

    Article  Google Scholar 

  • Horton, R. E. (1932). Drainage-basin characteristics. Transactions, American Geophysical Union, 13(1), 350.

    Article  Google Scholar 

  • Horton, R. E. (1945). Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56, 275–370.

    Article  Google Scholar 

  • Hynes, H. B. N. (1975). The stream and its valley. Verbandlungen Internationale Vereinigung fur Theoretische and Augewendie Limnologie, 19, 1–15.

    Google Scholar 

  • Jiménez-Muñoz, J. C., Mattar, C., Barichivich, J., Santamaría-Artigas, A., Takahashi, K., Malhi, Y., et al. (2016). Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Scientific Reports, 6, 33130.

    Article  CAS  Google Scholar 

  • Johnson, R. H. (1980). Hillslope stability and landslide hazard—A case study from Longdendale, north Derbyshire, England. Proceedings of the Geologists’ Association, 91(4), 315–325.

    Article  Google Scholar 

  • Jongmans, D., & Garambois, S. (2007). Geophysical investigation of landslides: A review. Bulletin de la Société Géologique de France, 2, 101–112.

    Article  Google Scholar 

  • Juneng, L., & Tangang, F. T. (2008). Level and source of predictability of seasonal rainfall anomalies in Malaysia using canonical correlation analysis. International Journal of Climatology, 28, 1255–1267.

    Article  Google Scholar 

  • Kallis, G., Gomez-Baggethun, E., & Zografos, C. (2013). To value or not to value? That is not the question. Ecological Economics, 94, 97–105.

    Article  Google Scholar 

  • Kamarudzaman, A. N., Voon, K. F., Aziz, R. A., & Jalil, M. F. A. (2011). Study of point and non point sources pollution—A case study of Timah Tasoh lake in Perlis, Malaysia. International Conference on Environmental and Computer Science, 19, 84–88.

    Google Scholar 

  • Khalid, M. S., & Shafiai, S. (2015). Flood disaster management in Malaysia: An evaluation of the effectiveness flood delivery system. International Journal of Social Science and Humanity, 5(4), 398–402.

    Article  Google Scholar 

  • Khalik, W. A. W. M., Abdullah, M. P., Amerudin, N. A., & Padli, N. (2013). Physicochemical analysis on water quality status of Bertam River in Cameron Highlands, Malaysia. Journal of Materials and Environmental Science, 4(4), 488–495.

    Google Scholar 

  • Khor, C. H., & Lee, S. C. (1993). Crash program solves Melaka’s water problem, In: Asian water and sewage: Malaysia Focus. From http://www.acssb.com.my/acssb/pdf/Publication-3.pdf. Accessed 21 March 2017.

  • Kousky, V. E., & Higgins, R. W. (2007). An alert classification system for monitoring and assessing the ENSO cycle. Weather Forecast, 22, 353–371.

    Article  Google Scholar 

  • Luck, G. W., Chan, K. M. A., & Fay, J. P. (2009). Protecting ecosystem services and biodiversity in the world’s watersheds. Conservation Letters, 2(4), 179–188.

    Article  Google Scholar 

  • Malek, M. A., Nor, M. A. M., & Leong, Y. P. (2013). Water security and its challenges for Malaysia. Earth and Environmental Science, 16, 1–4.

    Google Scholar 

  • McGregor, S., Timmermann, A., England, M. H., Elison Timm, O., & Wittenberg, A. T. (2013). Inferred changes in El Nino-Southern oscillation variance over the past six centuries. Climate of the Past, 9, 2269–2284.

    Article  Google Scholar 

  • McIntosh, A. C. (2014). Urban water supply and sanitation in Southeast Asia: A guide to good practice. Philippines: Asian Development Bank.

    Google Scholar 

  • Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: Synthesis. Washington DC: Island Press.

    Google Scholar 

  • Miller, V. C. (1953). A Quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain Area, Virginia and Tennessee. New York: Columbia University.

    Google Scholar 

  • Ministry of Natural Resources and Environment, Malaysia. (2011). The review of National Water Resource Study (2000–2050) and formulation of national water resources policy: Volume 13, Perak, Final Report. https://www.water.gov.my. Accessed 26 May 2016.

  • Morton, L. W., & Padgitt, S. (2005). Selecting socio-economic metrics for watershed management. Environmental Monitoring and Assessment, 103(1–3), 83–98. https://doi.org/10.1007/s10661-005-6855-z.

    Article  Google Scholar 

  • Natural Oceanic and Atmospheric Administration, US. (2015). Historical El Niño/La Nina episodes. http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_ v5.php. Accessed 13 Nov 2015

  • NEPcon. (2016). Supply chain of Malaysian timber and wood-based industries. Kuala Lumpur: WWF-Malaysia and Malaysian Wood Industries Association (MWIA).

  • Ng, C. K. C., Goh, C. H., Lin, J. C., Tan, M. S., Bong, W., Yong, C. S., et al. (2018). Water quality variation during a strong El Nino event in 2016: A case study in Kampar River. Malaysia. Environmental Monitoring and Assessment, 190, 402.

    Article  CAS  Google Scholar 

  • Ng, C. K. C., Ooi, P. A. C., Wong, W. L., & Khoo, G. (2019). Adaptation of an assessment system for establishing a River Physical Quality Index and testing its effectiveness with fish-based metrics in Malaysia. River Research and Applications. https://doi.org/10.1002/rra.3528.

    Article  Google Scholar 

  • Nilsson, C., Jansson, R., Malmqvist, B., & Naiman, R. J. (2007). Restoring riverine landscapes: The challenge of identifying priorities, reference states, and techniques. Ecology and Society. https://doi.org/10.5751/ES-02030-120116.

    Article  Google Scholar 

  • Oksel, O., Razali, N., Yusoff, M. K., Ismail, M. Z., Paee, K. F., & Ibrahim, K. N. (2009). The impacts of integrated farming to water quality: Case study on Langgas River, Kunak, Sabah, Malaysia. International Journal of Engineering and Technology, 9(9), 55–58.

    Google Scholar 

  • Pagella, F., & Sinclair, F. (2014). Development and use of a typology of mapping tools to assess their fitness for supporting management of ecosystem service provision. Landscape Ecology, 29, 383–399.

    Article  Google Scholar 

  • Pagiola, S., Rios, R. S., & Arcenas, A. (2008). Can the poor participate in payments for environmental services? Lessons form the Silvopastoral Project in Nicaragua. Environment and Development Economics, 13, 299–325.

    Article  Google Scholar 

  • Prasetyo, Y., & Nabilah, F. (2017). Pattern analysis of El Nino and La Nina phenomenon based on sea surface temperature (SST) and rainfall intensity using oceanic Nino Index (ONI) in West Java Area. Earth and Environmental Science, 98, 012041.

    Google Scholar 

  • Patton, P. C., & Baker, V. R. (1976). Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls. Water Resources Research, 12, 941–952.

    Article  Google Scholar 

  • Perak Water Board. (2013). Annual Report 2013. http://www.lap.com.my/bi/images/pdf/annual_report_2013.pdf. Accessed 26 June 2016.

  • Perak Water Board. (2016). Tariff calculation 2016. http://www.lap.com.my/bi/index.php/community1/informasi-umum/kiraan-tarif. Accessed 26 June 2016.

  • Poole, G. C. (2002). Fluvial landscape ecology: Addressing uniqueness within the river discontinuum. Freshwater Biology, 47(4), 641–660.

    Article  Google Scholar 

  • Porras, I., Grieg-Gran, M., & Neves, N. (2008). All that glitters: A review of payments for watershed services in developing countries. London: International Institute for Environment and Development.

    Google Scholar 

  • Postle, S. L., & Barton, H. T. (2005). Watershed protection: Capturing the benefits of nature’s water supply services. Natural Resources Forum, 29, 98–108.

    Article  Google Scholar 

  • Public Utilities Board, Singapore. (2017). Water Price. Retrieved from https://www.pub.gov.sg/watersupply/waterprice. Accessed 3 June 2017.

  • Public Utilities Board, Singapore. (2018). NEWater. https://www.pub.gov.sg/watersupply/fournationaltaps/newater. Accessed 6 May 2018.

  • Raghunath, H. M. (2006). Hydrology principles, analysis and design. New Delhi: New Age International.

    Google Scholar 

  • Rembold, F., Leo, O., Nègre, T., & Hubbard, N. (2015). The 2015–2016 El Niño event: Expected impact on food security and main response scenarios in East and Southern Africa (p. 27653). EUR: European Union.

    Google Scholar 

  • Ritter, D. F., Kochel, R. C., & Miller, J. R. (2002). Process geomorphology. New York: McGraw Hill.

    Google Scholar 

  • Robertson, M. (2012). Measurement and alienation: Making a world of ecosystem services. Transactions of the Institute of British Geographers, 37, 386–401.

    Article  Google Scholar 

  • Rodríguez-Iturbe, I., & Valdés, J. B. (1979). The geomorphologic structure of hydrologic response. Water Resources Research, 15(6), 1409–1420.

    Article  Google Scholar 

  • Rohani, M. (2013). Freshwater values framework: a review of water valuation methods utilised within total economic valuation. Auckland Council working report, WR2013/001.

  • Sakthivel, R., Jawahar Raj, N., Sivasankar, V., Akhila, P., & Omine, K. (2019). Geo-spatial technique-based approach on drainage morphometric analysis at Kalrayan Hills, Tamil Nadu, India. Applied Water Science, 9, 24.

    Article  Google Scholar 

  • Sargaonkar, A. P., Rathi, B., & Baile, A. (2011). Identifying potential sites for artificial groundwater recharge in sub-watershed of River Kanhan. India. Environmental Earth Sciences, 62(5), 1099–1108.

    Article  Google Scholar 

  • Schulz, W. H., McKenna, J. P., Kibler, J. D., & Biavati, G. (2009). Relations between hydrology and velocity of a continuously moving landslide—Evidence of pore-pressure feedback regulating landslide motion? Landslides, 6, 181–190.

    Article  Google Scholar 

  • Schumm, S. A. (1956). Evoulation of drainage systems and slopes in Badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67, 597–646.

    Article  Google Scholar 

  • Singh, V. P. (1992). Elementary hydrology. New Jersey: Prentice Hall.

    Google Scholar 

  • Smith, M., de Groot, D., Perrot-Maîte, D., & Bergkamp, G. (2006). Pay—Establishing payments for watershed services. Gland: IUCN.

    Book  Google Scholar 

  • Sofia, G., Hillier, J. K., & Conway, S. J. (2016). Frontiers in geomorphometry and earth surface dynamics: Possibilities, limitations and perspectives. Earth Surface Dynamics, 4(3), 721–725.

    Article  Google Scholar 

  • Spangenberg, J. H., & Settele, J. (2010). Precisely incorrect? Monetising the value of ecosystem services. Ecological Complexity, 7(3), 327–337.

    Article  Google Scholar 

  • Strahler, A. N. (1952). Hypsometric (area–altitude) analysis of erosional topology. Geological Society of America Bulletin, 63(11), 1117–1142.

    Article  Google Scholar 

  • Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913–920.

    Article  Google Scholar 

  • Strahler, A. N. (1964). Quantitative geomorphology of drainage basins and channel networks. In V. T. Chow (Ed.), Handbook of applied hydrology. New York: McGraw Hill.

    Google Scholar 

  • Sujaul, I. M., Hossain, M. A., Nasly, M. A., & Sobahan, M. A. (2013). Effect of industrial pollution on the spatial variation of surface water quality. American Journal of Environmental Science, 9(2), 120–129.

    Article  CAS  Google Scholar 

  • Suhardiman, D., Pavelic, P., Keovilignavong, O., & Giordano, M. (2018): Putting farmers’ strategies in the centre of agricultural groundwater use in the Vientiane Plain, Laos. International Journal of Water Resources Development.

  • Suresh, M., Shudhakar, S., Tiwari, K. N., & Chowdary, V. M. (2004). Prioritization of watersheds using morphometric parameters and assessment of surface water potential using remote sensing. Journal of the Indian Society of Remote Sensing, 32(3), 249–259.

    Article  Google Scholar 

  • Suruhanjaya Perkhidmatan Air Negara, Malaysia. (2016). Water rates in Malaysia. http://www.span.gov.my/pdf/Water_Tariff_2016.pdf. Accessed 18 June 2016.

  • The Economics of Ecosystems and Biodiversity. (2010). The economics of ecosystems and biodiversity: ecological and economic foundations. London: Earthscan.

    Google Scholar 

  • Thorndycroft, V. R., Benito, G., & Gregory, K. J. (2008). Fluvial geomorphology: A perspective on current status and methods. Geomorphology, 98, 2–12.

    Article  Google Scholar 

  • Thorp, J. H., Flotemersch, J. E., Delong, M. D., Casper, A. F., Thoms, M. C., Ballantyne, F., et al. (2010). Linking ecosystem services, rehabilitation and river hydrogeomorphology. BioScience, 60, 67–74.

    Article  Google Scholar 

  • Travelletti, J., & Malet, J. P. (2012). Characterization of the 3D geometry of flow-like landslides: A methodology based on the integration of heterogeneous multi-source data. Engineering Geology, 128, 30–48.

    Article  Google Scholar 

  • Troy, A., & Wilson, M. A. (2006). Mapping ecosystem services: Practical challenges and opportunities in linking GIS and value transfer. Ecological Economics, 60, 435–449.

    Article  Google Scholar 

  • United Nations Environment Programme. (2010). Clearing the waters: A focus on water quality solutions. Nairobi: Pacific Institute.

    Google Scholar 

  • Varotsos, C. A., Tzanis, C. G., & Sarlis, N. V. (2016). On the progress of the 2015–2016 El Nino event. Atmospheric Chemistry and Physics, 16, 2007–2011.

    Article  CAS  Google Scholar 

  • Vidal-Abarca, M. R., Suarez-Alonso, M. L., Santos-Martin, F., Martin-Lopez, B., Benayas, J., & Montes, C. (2014). Understanding complex links between fluvial ecosystems and social indicators in Spain: An ecosystem services approach. Ecological Complexity, 20, 1–10.

    Article  Google Scholar 

  • Vote, C., Newby, J., Phouyyavong, K., Inthavong, T., & Eberbach, P. (2015). Trends and perceptions of rural household groundwater use and the implications for smallholder agriculture in rainfed Southern Laos. International Journal of Water Resources Development, 31(4), 558–574.

    Article  Google Scholar 

  • Wang, C., Deser, C., Yu, J. Y., DiNezio, P., & Clement, A. (2017). El Nino and Southern Oscillation (ENSO): A review. In P. W. Glynn, D. P. Manzello, & I. C. Enochs (Eds.), Coral Reefs of the eastern tropical pacific. New York: Springer.

    Google Scholar 

  • Wunder, S., Engel, S., & Pagiola, S. (2008). Taking stock: A comparative analysis of payments for environmental services programs in developed and developing countries. Ecological Economics, 65, 834–852.

    Article  Google Scholar 

  • Wunder, S. (2013). When payments for environmental services will work for conservation. Conservation Letters, 6, 230–237.

    Article  Google Scholar 

  • Wunder, S. (2015). Revisiting the concept of payments for environmental services. Ecological Economics, 117, 234–243.

    Article  Google Scholar 

  • Zainal Abidin, Z. R. (2004). Water resources management in Malaysia—The way forward. Kuala Lumpur: Board of Engineers.

    Google Scholar 

  • Ziegler, A. D., Negishi, J. N., Sidle, R. C., Noguchi, S., & Nik, A. R. (2006). Impacts of logging disturbance on hillslope saturated hydraulic conductivity in a tropical forest in Peninsular Malaysia. CATENA, 67, 89–104.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are deeply grateful to the anonymous reviewers who have offered thoughtful comments that helped to enrich the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Casey Keat-Chuan Ng.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, C.KC., Ooi, P.AC., Wong, WL. et al. The geomorphology and ecosystem service economic value baselines of tributary watersheds in Malaysia. Environ Dev Sustain 23, 14472–14493 (2021). https://doi.org/10.1007/s10668-021-01253-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01253-y

Keywords

Navigation