Skip to main content

Advertisement

Log in

A linear/non-linear hybrid time-series model to investigate the depletion of inland water bodies

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Changing climate and human interference with natural phenomena are causing unprecedented changing patterns in hydro-climatic variables. These changes can manifest as dynamic changes of the stochastic properties of the datasets over time, which pose challenges for conventional time-series modeling. These datasets are dynamic in nature, even when trend and seasonality components are eliminated. Shrinking lakes are among the most notable examples of hydro-climatic-driven phenomena. This study demonstrates a framework that can capture the underlying dynamic and non-stationary structure of such environments using a case study of Maharlou Lake, Iran. To that end, a hybrid time-series model was developed to account for volatility in the data [i.e., SARIMA (1,1,2) × (1,1,2)12/GARCH(1,0)]. A series of statistical tests (i.e., augmented Dickey–Fuller test, the Ljung-Box test, the heteroskedasticity test, and the two-sample Kolmogorov–Smirnov test) were used to create, calibrate, and assess the model in the 95% confidence interval. The results indicate the decline and depletion of the lake. This reduction manifests as a general downward trend and a widening gap between the lake’s intra-annual fluctuations. The changes could be an alarming signal, as this saline lake could be mimicking the tragic fate of similar inland water bodies like Lake Urmia or the Aral Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Adhikari, R., & Agrawal, R. K. (2013). An introductory study on time series modeling and forecasting. Germany: Lambert Academic Publishing.

    Google Scholar 

  • AghaKouchak, A., Feldman, D., Hoerling, M., Huxman, T., & Lund, J. (2015). Water and climate: Recognize anthropogenic drought. Nature, 524(7566), 409.

    CAS  Google Scholar 

  • Araghinejad, S. (2013). Data-driven modeling: Using MATLAB® in water resources and environmental engineering. Dordrecht: Springer.

    Google Scholar 

  • Bastawesy, M. A., Khalaf, F. I., & Arafat, S. M. (2008). The use of remote sensing and GIS for the estimation of water loss from Tushka lakes, southwestern desert, Egypt. Journal of African Earth Sciences, 52(3), 73–80.

    Google Scholar 

  • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327.

    Google Scholar 

  • Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211–243.

    Google Scholar 

  • Box, G. E. P., & Jenkins, G. M. (1970). Time Series Analysis: Forecasting and Control. CA: Holden-Day San Francisco.

    Google Scholar 

  • Box, G. E. P., & Jenkins, G. M. (1973). Some comments on a paper by Chatfield and Prothero and on a review by Kendall. Journal of the Royal Statistical Society Series A (General), 136(3), 337–352.

    Google Scholar 

  • Bozorg-Haddad, O., Zolghadr-Asli, B., Sarzaeim, P., Aboutalebi, M., Chu, X., & Loáiciga, H. A. (2020). Evaluation of water shortage crisis in the Middle East and possible remedies. Journal of Water Supply: Research and Technology-AQUA, 69(1), 85–98.

    Google Scholar 

  • Brisset, E., Djamali, M., Bard, E., Borschneck, D., Gandouin, E., Garcia, M., et al. (2018). Late Holocene hydrology of Lake Maharlou, southwest Iran, inferred from high-resolution sedimentological and geochemical analyses. Journal of Paleolimnology, 61(1), 1–18.

    Google Scholar 

  • Chatfield, C. (1996). Model uncertainty and forecast accuracy. Journal of Forecasting, 15(7), 495–508.

    Google Scholar 

  • Chun, K. P., Wheater, H., & Onof, C. (2013). Prediction of the impact of climate change on drought: an evaluation of six UK catchments using two stochastic approaches. Hydrological Processes, 27(11), 1600–1614.

    Google Scholar 

  • Coe, M. T., & Foley, J. A. (2001). Human and natural impacts on the water resources of the Lake Chad basin. Journal of Geophysical Research: Atmospheres, 106(D4), 3349–3356.

    Google Scholar 

  • Dickey, D. A., & Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica Journal of the Econometric Society, 49(4), 1057–1072.

    Google Scholar 

  • Dufour, J. M., & Roy, R. (1986). Generalized portmanteau statistics and tests of randomness. Communications in Statistics-Theory & Methods, 15(10), 2953–2972.

    Google Scholar 

  • Ebtehaj, I., Bonakdari, H., & Gharabaghi, B. (2019). A reliable linear method for modeling lake level fluctuations. Journal of Hydrology, 570, 236–250.

    Google Scholar 

  • Enayati, M., Bozorg-Haddad, O., Bazrafshan, J., Hejabi, S., & Chu, X. (2020). Bias correction capabilities of quantile mapping methods for rainfall and temperature variables. Journal of Water and Climate Change. https://doi.org/10.2166/wcc.2020.261.

    Article  Google Scholar 

  • Fathian, F., Fakheri-Fard, A., Ouarda, T. B., Dinpashoh, Y., & Nadoushani, S. S. M. (2019). Multiple streamflow time series modeling using VAR–MGARCH approach. Stochastic Environmental Research and Risk Assessment, 33(2), 407–425.

    Google Scholar 

  • Goldfeld, S. M., & Quandt, R. E. (1965). Some tests for homoscedasticity. Journal of the American Statistical Association, 60(310), 539–547.

    Google Scholar 

  • Harris, R. I. (1992). Testing for unit roots using the augmented Dickey–Fuller test: Some issues relating to the size, power and the lag structure of the test. Economics Letters, 38(4), 381–386.

    Google Scholar 

  • Hipel, K. W., & McLeod, A. I. (1994). Time series modelling of water resources and environmental systems. Amsterdam: Elsevier.

    Google Scholar 

  • Hosseini-Moghari, S. M., Araghinejad, S., & Azarnivand, A. (2017). Drought forecasting using data-driven methods and an evolutionary algorithm. Modeling Earth Systems and Environment, 3(4), 1675–1689.

    Google Scholar 

  • Huang, L., Liu, J., Shao, Q., & Liu, R. (2011). Changing inland lakes responding to climate warming in Northeastern Tibetan Plateau. Climatic Change, 109(3–4), 479–502.

    Google Scholar 

  • Jones, B. A., & Fleck, J. (2020). Shrinking lakes, air pollution, and human health: Evidence from California’s Salton Sea. Science of the Total Environment, 1, 136490.

    Google Scholar 

  • Khazaei, B., Khatami, S., Alemohammad, S. H., Rashidi, L., Wu, C., Madani, K., et al. (2019). Climatic or regionally induced by humans? Tracing hydro-climatic and land-use changes to better understand the Lake Urmia tragedy. Journal of Hydrology, 569, 203–217.

    Google Scholar 

  • Kolmogorov, A. (1933). Sulla Determinazione Empirica di una Legge di Distributione. Giornale dell’Istituto Italiano degli Attuari, 4, 83–91.

    Google Scholar 

  • Lemma, B. (2003). Ecological changes in two Ethiopian lakes caused by contrasting human intervention. Limnologica, 33(1), 44–53.

    Google Scholar 

  • Ljung, G. M., & Box, G. E. (1978). On a measure of lack of fit in time series models. Biometrika, 65(2), 297–303.

    Google Scholar 

  • Massey, F. J. (1951). The Kolmogorov-Smirnov test for goodness of fit. Journal of the American Statistical Association, 46(253), 68–78.

    Google Scholar 

  • Mehdizadeh, S., Ahmadi, F., Mehr, A. D., & Safari, M. J. S. (2020). Drought modeling using classic time series and hybrid wavelet-gene expression programming models. Journal of Hydrology, 1, 125017.

    Google Scholar 

  • Mehdizadeh, S., Fathian, F., Safari, M. J. S., & Adamowski, J. F. (2019). Comparative assessment of time series and artificial intelligence models to estimate monthly streamflow: A local and external data analysis approach. Journal of Hydrology, 579, 124225.

    Google Scholar 

  • Messager, M. L., Lehner, B., Grill, G., Nedeva, I., & Schmitt, O. (2016). Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nature Communications, 7, 13603.

    CAS  Google Scholar 

  • Metcalfe, A. V., & Cowpertwait, P. S. (2009). Introductory time series with R. New York: Springer.

    Google Scholar 

  • Mirdashtvan, M., Najafinejad, A., Malekian, A., & Sa’ doddin, A. (2020). Regional analysis of trend and non-stationarity of hydro-climatic time series in the Southern Alborz Region, Iran. International Journal of Climatology, 40(4), 1979–1991.

    Google Scholar 

  • Mossad, A., & Alazba, A. A. (2015). Drought forecasting using stochastic models in a hyper-arid climate. Atmosphere, 6(4), 410–430.

    Google Scholar 

  • Ozaki, T. (1977). On the order determination of ARIMA models. Journal of the Royal Statistical Society: Series C (Applied Statistics), 26(3), 290–301.

    Google Scholar 

  • Shatanawi, K., Rahbeh, M., & Shatanawi, M. (2013). Characterizing, monitoring and forecasting of drought in Jordan River Basin. Journal of Water Resource and Protection, 5(12), 40867.

    Google Scholar 

  • Smirnov, N. V. (1939). Sur les Écarts de la Courbe de Distribution Empirique. Matemnticeskii Sbornike, 6, 3–26.

    Google Scholar 

  • Thursby, J. G. (1982). Misspecification, heteroscedasticity, and the Chow and Goldfeld-Quandt tests. The Review of Economics & Statistics, 64(2), 314–321.

    Google Scholar 

  • Timms, B. V. (2005). Salt lakes in Australia: Present problems and prognosis for the future. Hydrobiologia, 552(1), 1–15.

    Google Scholar 

  • Valipour, M. (2015). Long-term runoff study using SARIMA and ARIMA models in the United States. Meteorological Applications, 22(3), 592–598.

    Google Scholar 

  • Wurtsbaugh, W. A., Miller, C., Null, S. E., DeRose, R. J., Wilcock, P., Hahnenberger, M., et al. (2017). Decline of the world’s saline lakes. Nature Geoscience, 10(11), 816.

    CAS  Google Scholar 

  • Yechieli, Y., Abelson, M., Bein, A., Crouvi, O., & Shtivelman, V. (2006). Sinkhole “swarms” along the Dead Sea coast: Reflection of disturbance of lake and adjacent groundwater systems. Geological Society of America Bulletin, 118(9–10), 1075–1087.

    Google Scholar 

  • Zhang, F., Tiyip, T., Johnson, V. C., Ding, J. L., Sun, Q., Zhou, M., et al. (2015). The influence of natural and human factors in the shrinking of the Ebinur Lake, Xinjiang, China, during the 1972–2013 period. Environmental Monitoring and Assessment, 187(1), 4128.

    Google Scholar 

  • Zhang, Y., Yang, H., Cui, H., & Chen, Q. (2019). Comparison of the Ability of ARIMA, WNN and SVM Models for Drought Forecasting in the Sanjiang Plain, China. Natural Resources Research, 1, 1–18.

    Google Scholar 

  • Zolghadr-Asli, B., & Behrooz-Koohenjani, S. (2020). Adverse impacts of climate change in Maharlou Lake Basin. Iran. Hydro Science & Marine Engineering, 1, 1. https://doi.org/10.30564/hsme.v2i1.1507.

    Article  Google Scholar 

  • Zolghadr-Asli, B., Bozorg-Haddad, O., Sarzaeim, P., & Chu, X. (2019). Investigating the variability of GCMs’ simulations using time series analysis. Journal of Water and Climate Change, 10(3), 449–463.

    Google Scholar 

  • Zolghadr-Asli, B., Naghdyzadegan Jahromi, M., Enayati, M., Naghdizadegan Jahromi, M., Pourghasemi, H.R., & Tiefenbacher, J.P. (2020) Detecting the depletion patterns of inland water bodies using a remote sensing-based statistical framework, in press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Zolghadr-Asli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolghadr-Asli, B., Enayati, M., Pourghasemi, H.R. et al. A linear/non-linear hybrid time-series model to investigate the depletion of inland water bodies. Environ Dev Sustain 23, 10727–10742 (2021). https://doi.org/10.1007/s10668-020-01081-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-01081-6

Keywords