Skip to main content

Advertisement

Log in

The effect of green spaces on the urban thermal environment during a hot-dry season: a case study of Port Harcourt, Nigeria

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Improving the planning and management of urban green spaces can cause a drastic reduction in land surface temperature (LST). This research explored the geospatial techniques in assessing the effect of green spaces on the thermal environment of Port Harcourt, Nigeria during a hot-dry season. In this study, the normalized difference vegetation index (NDVI) and soil-adjusted vegetation index (SAVI) were employed to investigate the effects of vegetation distribution of urban green spaces on the urban thermal environment. LST maps were retrieved from the Thermal Infrared Sensor data of Landsat 8 acquired on 27 December 2018, while urban green spaces were extracted from high-resolution Google Earth Pro imagery. The results showed that a strong negative relationship exists between NDVI and LST, as well as between SAVI and LST which showed that urban green spaces have proven to have substantial cooling effects on the urban thermal environment within the study area. Results further revealed that increasing the area of green spaces to 28.67 ha and above will ensure the attainment of a stronger Park Cooling Intensity (PCI) effect. On the other hand, green spaces which are 8.28 ha or less have a lower PCI effect. The shape (perimeter/area) of green spaces has proven to have a negative correlation with the PCI effect. Green spaces with near-circular configurations will produce a stronger PCI effect. The role of urban greenery in mitigating high discomfort experienced in urban environments is crucial to urban planners and managers in the design of green spaces with a high cooling effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Aderoju, O. M., Samakinwa, E. K., & Ibrahim, D. (2013). An assessment of urban heat Island in Akure using geospatial techniques. Journal of Environmental Science, Taxicology, 6(3), 24–34.

    Google Scholar 

  • Agbor, E. O. M. C. F. (2019). Geoinformatic assessment of urban heat island and land use / cover processes: A case study from Akure. Environmental Earth Sciences. https://doi.org/10.1007/s12665-019-8433-7

    Article  Google Scholar 

  • Agnihotri, A. K., Ohri, A., & Mishra, S. (2018). Impact of Green Spaces on the urban Microclimate through Landsat 8 and TIRS Data, in Varanasi, India. International Journal of Environment and Sustainability. https://doi.org/10.24102/ijes.v7i2.913

    Article  Google Scholar 

  • Alavipanah, S. K., Saradjian, M., Savaghebi, G. R., Komaki, C. B., Moghimi, E., & Karimpur Reyhan, M. (2010). Land surface temperature in the yardang region of Lut desert (Iran) based on field measurements and Landsat thermal data. Journal Agriculture. Science Technology, 9, 287–303.

    Google Scholar 

  • Amani-Beni, M., Zhang, B., Xie, G. D., & Shi, Y. (2019). Impacts of urban green landscape patterns on land surface temperature: Evidence from the adjacent area of Olympic Forest Park of Beijing China. Sustainability, 11(2), 513.

    Google Scholar 

  • Anjos, M., & Lopes, A. (2017). Urban Heat Island and Park Cool Island Intensities in the Coastal City of Aracaju North-Eastern Brazil. Sustainability, 9(8), 1379. https://doi.org/10.3390/su9081379

    Article  Google Scholar 

  • Arnfield, A. J. (2003). Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 23, 1–26.

    Google Scholar 

  • Balogun, I. A., Balogun, A. A., & Adeyewa, Z. D. (2012). Observed urban heat island characteristics in Akure, Nigeria. African Journal of Environmental Science and Technology, 6(1), 1–8.

    Google Scholar 

  • Balogun, I. A., & Daramola, M. T. (2018). The impact of urban green areas on the surface thermal environment of a tropical city: A case study of Ibadan. Nigeria: Spatial Information Research. https://doi.org/10.1007/s41324-018-0219-6

    Book  Google Scholar 

  • Barrera, F. D., Reyes-paecke, S., & Banzhaf, E. (2015). Indicators for green spaces in contrasting urban settings. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2015.10.027

    Article  Google Scholar 

  • Buyadi, S., N., A., Mohd, W., M., N., W., & Misni, A. (2014). Impact of vegetation growth on urban surface temperature distribution Impact of vegetation growth on urban surface temperature distribution. 8th International Symposium of the Digital Earth (ISDE8). https://doi.org/10.1088/1755-1315/18/1/012104

  • Cao, X., Onishi, A., Chen, J., & Imura, H. (2010). Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landscape Urban Planning, 96, 224–231.

    Google Scholar 

  • Carlson, T. N., & Ripley, D. A. (1997). On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62, 241–252.

    Google Scholar 

  • Cetin, M. (2015). Using GIS analysis to assess urban green space in terms of accessibility: Case study in Kutahya. International Journal of Sustainable Development & World Ecology, 22(5), 420–424. https://doi.org/10.1080/13504509.2015.1061066

    Article  Google Scholar 

  • Chang, C. R., Li, M. H., & Chang, S. D. (2007). A preliminary study on the local cool-island intensity of Taipei city parks. Landscape and Urban Planning, 80, 386–395.

    Google Scholar 

  • Chen, Y., & Wong, N. H. (2006). Thermal benefits of city parks. Energy and Buildings, 38, 105–120.

    Google Scholar 

  • Chibuike, E. M., Adedeji, O. I., Joshua, J. K., & Ahmad, A. (2018). Assessment of green parks cooling effect on Abuja Urban microclimate using geospatial techniques. Remote Sensing Applications: Society and Environment. https://doi.org/10.1016/j.rsase.2018.04.006

    Book  Google Scholar 

  • Choi, H., & Lee, W.K. (2011). Effect of green spaces on urban heat distribution using satellite imagery. In 32nd Asian Conference on Remote Sensing 2011, ACRS 2011 (Vol. 4, pp. 2286–2289).

  • Choi, H., Lee, W., & Byun, W. (2012). Determining the effect of green spaces on urban heat distribution using satellite imagery. Asian Journal of Atmospheric Environment, 6, 127–135. https://doi.org/10.5572/ajae.2012.6.2.127

    Article  Google Scholar 

  • Connors, J. P., Galletti, C. S., & Chow, W. T. L. (2013). Landscape configuration and urban heat island effects: Assessing the relationship between landscape characteristics and land surface temperature in Phoenix Arizona. Landscape Ecology, 28, 271–283.

    Google Scholar 

  • Cui, Y. Y., & de Foy, B. (2012). Seasonal variations of the urban heat island at the surface and the near-surface and reductions due to urban vegetation in Mexico City. Journal of Applied Meteorology and Climatolog, 51, 855–868.

    Google Scholar 

  • Declet-Barreto, J., Brazel, A. J., Martin, C. A., Chow, W. T., & Harlan, S. L. (2013). Creating the park cool island in an inner-city neighborhood: Heat mitigation strategy for Phoenix, AZ. Urban Ecosystems, 16(3), 617–635.

    Google Scholar 

  • Dimoudi, A., & Nikolopoulou, M. (2003). Vegetation in the urban environment: Micro-climate analysis and benefits. Energy and Buildings, 35, 69–76.

    Google Scholar 

  • Du, H., Cai, W., Xu, Y., Wang, Z., Wang, Y., & Cai, Y. (2017). Quantifying the cool island effects of urban green spaces using remote sensing Data. Urban Forestry & Urban Greening, 27, 24–31.

    Google Scholar 

  • Eludoyin, A. O., Omotoso, I., & Eludoyin, O. M. (2019). Remote Sensing technology for evaluation of variations in land surface temperature, and case study analysis from Southwest Nigeria : Volume eight remote sensing technology for evaluation of variations in land surface temperature, and case study analysis from Southwest Nigeria. https://doi.org/10.1007/978-3-030-04750-4.

  • Estoque, R. C., Murayama, Y., & Myint, S. W. (2017). Effects of landscape composition and patternon land surface temperature: An urban heat island study in the megacities of Southeast Asia. Science of the Total Environment, 577, 349–359.

    CAS  Google Scholar 

  • Feizizadeh, B., & Blaschke, T. (2013). Examining urban heat island relations to land use and air pollution: Multiple end member spectral mixture analysis for thermal remote sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6, 1749–1756.

    Google Scholar 

  • Georgi, N. J., & Dimitriou, D. (2010). The contribution of urban green spaces to the improvement of environment in cities: Case study of Chania, Greece. Building and Environment, 45, 1401–1414.

    Google Scholar 

  • Giorgio, G., Ragosta, M., & Telesca, V. (2017). Climate variability and industrial-suburban heat environment in a mediterranean area. Sustainability, 9, 775.

    Google Scholar 

  • Guhathakurta, S., & Gover, G. (2007). The impact of the Phoenix heat island on residential water use. Journal of the American Planning Association, 73(3), 317–329.

    Google Scholar 

  • Hamdi, R., & Schayes, G. (2007). Sensitivity study of the urban heat island intensity to urban characteristics. International Journal of Climatology, 28, 973–982.

    Google Scholar 

  • Hattis, D., Ogneva-Himmelberger, Y., & Ratick, S. (2012). The spatial variability of heat-related mortality in Massachusetts. Applied Geography, 33, 45–52.

    Google Scholar 

  • Huang, G., Zhou, W., & Cadenasso, M. L. (2011). Is everyone hot in the city? Spatial pattern of land surface temperatures, land cover and neighborhood socioeconomic characteristics in Baltimore MD. Journal of Environmental Management, 92, 1753–1759.

    Google Scholar 

  • Huete, A. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25, 295–309.

    Google Scholar 

  • Imhoff, M. L., Zhang, P., Wolfe, R. E., & Bounoua, L. (2010). Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment, 114, 504–513.

    Google Scholar 

  • Jauregui, E. (1990). Influence of a large urban park on temperature and convective precipitation in a tropical city. Energy and Buildings, 15, 457–463.

    Google Scholar 

  • Jensen, J. R. (2007). Remote sensing of the environment: An earth resource perspective (2nd ed.). Pearson Prentice Hall: Upper Saddle River, NJ, USA.

    Google Scholar 

  • Kaplan, G., Avdan, U., & Avdan, Z. Y. (2018). Urban heat island analysis using the landsat 8 satellite data: A case study in Skopje. Macedonia. https://doi.org/10.3390/ecrs-2-05171

    Article  Google Scholar 

  • Kaufmann, R. K., Zhou, L., Myneni, R. B., Tucker, C. J., Slayback, D., Shabanov, N. V., & Pinzon, J. (2003). The effect of vegetation on surface temperature: A statistical analysis of NDVI and climate data. Geophysical research letters, 30(22), 3–6. https://doi.org/10.1029/2003GL018251

    Article  Google Scholar 

  • Kayet, N. (2016). Urban heat island explored by co-relationship between land surface temperature verses multiple vegetation indices. Spatial Information Research. https://doi.org/10.1007/s41324-016-0049-3

    Article  Google Scholar 

  • Kayet, N., Pathak, K., Chakrabarty, A., & Sahoo, S. (2016). Urban heat island explored by co-relationship between land surface temperature vs multiple vegetation indices. Spatial Information Research, 24(5), 515–529.

    Google Scholar 

  • Klok, L., Zwart, S., Verhagen, H., & Mauri, E. (2012). The surface heat island of Rotterdam and its relationship with urban surface characteristics. Resources, Conservation and Recycling, 64, 23–29.

    Google Scholar 

  • Koc, C. B., Osmond, P., Peters, A., & Irger, M. (2017). A Methodological Framework to assess the thermal performance of green infrastructure through airborne remote sensing. Procedia Engineering, 180, 1306–1315.

    Google Scholar 

  • Kovats, T. R., & Hajat, S. (2008). Heat stress and public health: A critical review. Annual Review of Public Health, 29, 42–55.

    Google Scholar 

  • Lai, L.-W., & Cheng, W. L. (2009). Air quality influenced by urban heat island coupled with synoptic weather patterns. Science of the Total Environment, 407, 2724–2733.

    CAS  Google Scholar 

  • Li, X., Zhou, W., Ouyang, Z., Xu, W., & Zheng, H. (2012). Spatial pattern of green space affects land surface temperature: Evidence from the heavily urbanized Beijing metropolitan area China. Landscape Ecology, 27, 887–898.

    Google Scholar 

  • Li, Z. L., Tang, B. H., Wu, H., Ren, H., Yan, G., Wan, Z., & Sobrino, J. A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote sensing of environment, 131, 14–37.

    Google Scholar 

  • Lin, W., Yu, T., Chang, X., Wu, W., & Zhang, Y. (2015). Calculating cooling extents of green parks using remote sensing: Method and test. Landscape and Urban Planning, 134, 66–75.

    Google Scholar 

  • Liu, L., & Zhang, Y. (2011). Urban heat island analysis using the landsat TM data and ASTER Data: A case study in Hong Kong. Remote Sensing, 3(7), 1535–1552. https://doi.org/10.3390/rs3071535

    Article  Google Scholar 

  • Lobell, D. B., & Gourdji, S. M. (2012). The influence of climate change on global crop productivity. Plant Physiology, 160, 1686–1697.

    CAS  Google Scholar 

  • Maimaitiyiming, M., Ghulam, A., Tiyip, T., Pla, F., Latorre-Carmona, P., Halik, Ü., & Caetano, M. (2014). Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS Journal of Photogrammetry and Remote Sensing, 89, 59–66. https://doi.org/10.1016/j.isprsjprs.2013.12.010

    Article  Google Scholar 

  • Makhelouf, A. (2009). The effect of green spaces on urban climate and pollution. Iran Journal Environment Health Science Engineering, 6(1), 35–40.

    CAS  Google Scholar 

  • Memon, R. A., Leung, D. Y. C., & Chunho, L. I. U. (2008). A review on the generation, determination and mitigation of urban Heat Island. Journal Of Environment Science, 20, 120–128.

    Google Scholar 

  • Mfondoum, A. H. N., Etouna, J., Nongsi, B. K., Moto, F. A. M., & Deussieu, F. N. (2016). Assessment of land degradation status and its impact in arid and semi-arid areas by correlating spectral and principal component analysis neo-bands. Cloud Publications, International Journal of Advanced Remote Sensing and GIS, 5(2), 1539–1560.

    Google Scholar 

  • National Population Commission, NPC 2006 Report. https://en.wikipedia.org/wiki/Port_Harcourt. Retrieved 15 March 2019.

  • Nigerian Meteorological Agency (NiMet) Seasonal Rainfall Prediction (SRP) report (2018) (https://fscluster.org/sites/default/files/documents/overview_of_the_2018_srp_by_prof._mashi2.pdf). Retrieved 10 March 2019.

  • Nor, S., Buyadi, A., Mohd, W., Wan, N., & Misni, A. (2013). Green Spaces Growth Impact on the urban Microclimate. Procedia - Social and Behavioral Sciences, 105, 547–557. https://doi.org/10.1016/j.sbspro.2013.11.058.

    Article  Google Scholar 

  • Nowak, D. J., & Dwyer, J. F. (2007). Understanding the benefits and costs of urban forest ecosystems. In J. E. Kuser (Ed.), Urban and community forestry in the Northeast (pp. 25–46). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-4289-8_2.

  • Nwaerema, P., Vincent, O., Amadou, C., & Morrison, A. (2019). Spatial assessment of land surface temperature and emissivity in the tropical littoral City of Port Harcourt, Nigeria. International Journal of Environment and Climate Change, 9(2), 88–103. https://doi.org/10.9734/ijecc/2019/v9i230099

    Article  Google Scholar 

  • Peng, J., Xie, P., Liu, Y., & Ma, J. (2016). Remote sensing of environment urban thermal environment dynamics and associated landscape pattern factors : A case study in the Beijing metropolitan region. Remote Sensing of Environment, 173, 145–155. https://doi.org/10.1016/j.rse.2015.11.027

    Article  Google Scholar 

  • Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottle, C., Bréon, F.-M., et al. (2011). Surface urban heat island across 419 global big cities. Environmental Science and Technology, 2011(46), 696–703.

    Google Scholar 

  • Qin, Z.-H., Karnieli, A., & Berliner, P. (2001). A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. International Journal of Remote Sensing, 22, 3719–3746.

    Google Scholar 

  • Ren, Z., He, X., Zheng, H., Zhang, D., Yu, X., Shen, G., & Guo, R. (2013). Estimation of the relationship between urban Park characteristics and park cool Island intensity by remote sensing data and field measurement. Forests, 4, 868–886. https://doi.org/10.3390/f4040868

    Article  Google Scholar 

  • Rogan, J., Ziemer, M., Martin, D., Ratick, S., Cuba, N., & DeLauer, V. (2013). The impact of tree cover loss on land surface temperature: A case study of central massachusetts using landsat thematic mapper thermal data. Applied Geography, 45, 49–57. https://doi.org/10.1016/j.apgeog.2013.07.004

    Article  Google Scholar 

  • Rouse, J.W.; Haas, R.H.; Schell, J.R.; Deering, D.W. (1974). Monitoring vegetation systems in the Great Plains with ETRS. Third Earth Resources Technology Satellite-1 Symposium- Volume I: Technical Presentations; NASA SP-351; NASA: Washington, DC, USA; p. 309.

  • Saini, V., Arora, M. K., & Gupta, R. P. (2016, May). Relationship between surface temperature and SAVI using Landsat data in a coal mining area in India. In Land Surface and Cryosphere Remote Sensing III (Vol. 9877, p. 987711). International Society for Optics and Photonics.

  • Sarrat, C., Lemonsu, A., Masson, V., & Guedalia, D. (2006). Impact of urban heat island on regional atmospheric pollution. Atmospheric Environment, 40, 1743–1758.

    CAS  Google Scholar 

  • Schwarz, N., Schlink, U., Franck, U., & Grobmann, K. (2012). Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators an application for the city of Leipzig. Ecological Indicators, 18, 693–704.

    Google Scholar 

  • Shah, M. D., & Haq, A. (2011). Urban green spaces and an integrative approach to sustainable environment. Journal of Environmental Protection, 2, 601–608. https://doi.org/10.4236/jep.2011.25069

    Article  Google Scholar 

  • Shashua-Bar, L., Tsiros, I. X., & Hoffman, M. E. (2010). A modeling study for evaluating passive cooling scenarios in urban streets with trees. Case study: Athens, Greece. Building and Environment, 45(12), 2798–2807.

    Google Scholar 

  • Shi, Y., & Zhang, Y. (2018). Remote sensing retrieval of urban land surface temperature in hot-humid region. Urban climate, 24, 299–310.

    Google Scholar 

  • Skelhorn, C., Lindley, S., & Levermore, G. (2014). Landscape and urban planning the impact of vegetation types on air and surface temperatures in a temperate city: A fine scale assessment in Manchester, UK. Landscape and Urban Planning, 121, 129–140. https://doi.org/10.1016/j.landurbplan.2013.09.012

    Article  Google Scholar 

  • Sobrino, J., Jiménez-Muñoz, J., & Paolini, L. (2004). Land surface temperature retrieval from Landsat TM 5. Remote Sensing of Environment, 90, 434–440.

    Google Scholar 

  • Solecki, W. D., Rosenzweig, C., Parshall, L., Pope, G., Clark, M., Cox, J., & Wiencke, M. (2005). Mitigation of the heat island effect in urban New Jersey. Global Environment Change B Environment Hazards, 6, 39–49.

    Google Scholar 

  • Srivanit, M., & Hokao, K. (2013). Evaluating the cooling effects of greening for improving the outdoor thermal environment at an institutional campus in the summer. Building and Environment, 66, 158–172.

    Google Scholar 

  • Sun, Q., Wu, Z., & Tan, J. (2012). The relationship between land surface temperature and land use/land cover in Guangzhou. China. https://doi.org/10.1007/s12665-011-1145-2

    Article  Google Scholar 

  • Sun, R., & Chen, L. (2017). Effects of green space dynamics on urban heat islands: Mitigation and diversification. Ecosystem Services, 23(2017), 38–46. https://doi.org/10.1016/j.ecoser.2016.11.011

    Article  Google Scholar 

  • Sun, S., Xu, X., Lao, Z., Liu, W., Li, Z., García, E. H., & Zhu, J. (2017). Evaluating the impact of urban green space and landscape design parameters on thermal comfort in hot summer by numerical simulation. Building and Environment, 123, 277–288. https://doi.org/10.1016/j.buildenv.2017.07.010

    Article  CAS  Google Scholar 

  • Taha, H. (1997). Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy and Buildings, 25, 99–103.

    Google Scholar 

  • Tran, H., Uchihama, D., Ochi, S., & Yasuoka, Y. (2006). Assessment with satellite data of the urban heat island effects in Asian mega cities. International Journal of Applied Earth Observation and Geoinformation, 8, 34–48.

    Google Scholar 

  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150.

    Google Scholar 

  • Unger, J. (2004). Intra-urban relationship between surface geometry and urban heat island: Review and new approach. Climate Research, 27, 253–264.

    Google Scholar 

  • Vidrih, B., & Medved, S. (2013). Multi parametric model of urban park cooling island. Urban Forestry & Urban Greening, 12, 220–229. https://doi.org/10.1016/j.ufug.2013.01.002

    Article  Google Scholar 

  • Voogt, J. A., & Oke, T. (1998). Effects of urban surface geometry on remotely-sensed surface temperature. International Journal of Remote Sensing, 19, 895–920.

    Google Scholar 

  • Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86, 370–384.

    Google Scholar 

  • Wang, X., Cheng, H., Xi, J., Yang, G., & Zhao, Y. (2018). Relationship between park composition, vegetation characteristics and cool island effect. Sustainability, 10(3), 587. https://doi.org/10.3390/su10030587

    Article  Google Scholar 

  • Weng, Q. (2009). Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 335–344.

    Google Scholar 

  • Weng, Q., & Yang, S. (2006). Urban air pollution patterns, land use, and thermal landscape: An examination of the linkage using GIS. Environmental Monitoring and Assessment, 117, 463–489.

    CAS  Google Scholar 

  • Wu, C. D., Lung, S. C. C., & Jan, J. F. (2013). Development of a 3-D urbanization index using digital terrain models for surface urban heat island effects. ISPRS Journal of Photogrammetry and Remote Sensing, 81, 1–11.

    Google Scholar 

  • Xu, X., Cai, H., Qiao, Z., Wang, L., Jin, C., & Ge, Y. (2017). Impacts of park landscape structure on thermal environment using QuickBird and Landsat images. Chinese Geographical Science, 27(5), 818–826. https://doi.org/10.1007/s11769-017-0910-x

    Article  Google Scholar 

  • Yang, C., He, X., Wang, R., Yan, F., Yu, L., & Bu, K. (2017). The effect of urban green spaces on the urban thermal environment and its seasonal variations. Forests, 8(5), 153.

    CAS  Google Scholar 

  • Yang, C., He, X., Yu, L., Yang, J., Yan, F., Bu, K., & Zhang, S. (2017). The cooling effect of Urban parks and its monthly variations in a snow climate City. Remote Sensing, 9(10), 1066.

    Google Scholar 

  • Yu, C., & Hien, W. N. (2006). Thermal benefits of city parks. Energy and Buildings, 38(2), 105–120. https://doi.org/10.1016/j.enbuild.2005.04.003

    Article  Google Scholar 

  • Yue, W., Xu, J., Tan, W., & Xu, L. (2007). The relationship between land surface temperature and NDVI with remote sensing: application to Shanghai Landsat 7 ETM+ data. International Journal of Remote Sensing, 28(15), 3205–3226. https://doi.org/10.1080/01431160500306906

    Article  Google Scholar 

  • Zhang, J., Gou, Z., & Shutter, L. (2019). Effects of internal and external planning factors on park cooling intensity: Field measurement of urban parks in Gold Coast. Australia, 6, 417–434. https://doi.org/10.3934/environsci.2019.6.417

    Article  Google Scholar 

  • Zhang, X., Zhong, T., Feng, X., & Wang, K. (2009). Estimation of the relationship between forest patches and urban land surface temperature with remote sensing. International Journal of Remote Sensing, 30, 2105–2118.

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the United States Geological Survey (USGS) server (https://earthexplorer.usgs.gov/) for the provision of data used for this study.

Funding

This study was funded by all the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Ekwe.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekwe, M.C., Adamu, F., Gana, J. et al. The effect of green spaces on the urban thermal environment during a hot-dry season: a case study of Port Harcourt, Nigeria. Environ Dev Sustain 23, 10056–10079 (2021). https://doi.org/10.1007/s10668-020-01046-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-01046-9

Keywords