Skip to main content

Smallholder grain postharvest management in a variable climate: practices and perceptions of smallholder farmers and their service-providers in semi-arid areas

Abstract

Field data on current crop postharvest management practices and perceptions from smallholder farming communities in an increasingly variable climate are scarce. Our study used a multi-dimensional approach to explore the practices and perceptions of these communities and their service-providers regarding grain postharvest management in semi-arid Mbire and Hwedza districts in Zimbabwe. A total of 601 individual household interviews, six focus group discussions with women and men, and interviews with 40 district stakeholders and 53 community key informants were conducted. Farmers and service-providers explained how climate change was threatening food security; causing reduced and more variable maize and sorghum yields of below 0.5 t/ha, alongside higher grain storage insect pest pressure. Increased food insecurity and concerns regarding grain theft have driven a shift from bulk storage in traditional outdoor free-standing granaries to polypropylene bags stacked inside the living quarters. Poor and improper use of synthetic pesticides in these circumstances exacerbates the health-related risks. Agricultural extension officers were the most common source of agronomic and postharvest information followed by farmer-to-farmer information exchange. Targeted postharvest training; participatory field trials involving agricultural extension staff, farmers and other service-providers; and policy dialogue around grain postharvest management and food security are proposed to help in strengthening the capacity to reduce grain postharvest losses under increasingly unpredictable conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. APHLIS. (2019). Zimbabwe cereal postharvest losses. Zimbabwe cereal postharvest losses. www.aphlis.net. Retrieved February 23, 2019.

  2. Arkkelin, D. (2014). Using SPSS to understand research and data analysis. Psychology Curricular Materials, 2014, 194.

    Google Scholar 

  3. AUC. (2014). Malabo declaration on accelerated agricultural growth and transformation for shared prosperity and improved livelihoods. Malabo, Equatorial Guinea. June 26–27, 2014. AUC. https://au.int/sites/default/files/documents/31006-doc-malabo_declaration_2014_11_26-.pdf. Retrieved August 23, 2020.

  4. Behmer, S. T. (2005). Nutrition in insects. In J. Capinera (Ed.), Encyclopedia of entomology (pp. 1577–1582). Dordrecht: Springer. https://doi.org/10.1007/0-306-48380-7_2923.

    Chapter  Google Scholar 

  5. Bola, G., Mabiza, C., Goldin, J., Kujinga, K., Nhapi, I., Makurira, H., et al. (2013). Coping with droughts and floods: A case study of Kanyemba, Mbire District, Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C, 67–69, 180–186. https://doi.org/10.1016/j.pce.2013.09.019.

    Article  Google Scholar 

  6. Borgemeister, C., Adda, C., Sétamou, M., Hell, K., Djomamou, B., Markham, R. H., et al. (1998). Timing of harvest in maize: Effects on post harvest losses due to insects and fungi in central Benin, with particular reference to Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae). Agriculture, Ecosystems and Environment, 69(3), 233–242. https://doi.org/10.1016/S0167-8809(98)00109-1.

    Article  Google Scholar 

  7. Boxall, R. A. (2002). Damage and loss caused by the Larger Grain Borer, Prostephanus truncatus. Integrated Pest Management Reviews, 7(2), 105–121. https://doi.org/10.1023/A:1026397115946.

    Article  Google Scholar 

  8. Brown, D., Chanakira, R. R., Chatiza, K., Dhliwayo, M., Dodman, D., Masiiwa, M., et al. (2012). Climate change impacts, vulnerability and adaptation in Zimbabwe. International Institute for Environment and Development. https://www.jstor.org/stable/resrep01235. Retrieved February 20, 2019.

  9. Chigoverah, A., & Mvumi, B. (2016). Efficacy of metal silos and hermetic bags against stored-maize insect pests under simulated smallholder farmer conditions. Journal of Stored Products Research, 69, 179–189. https://doi.org/10.1016/j.jspr.2016.08.004.

    Article  Google Scholar 

  10. Damalas, C., & Eleftherohorinos, I. (2011). Pesticide exposure, safety issues, and risk assessment Indicators. International Journal of Environmental Research and Public Health, 8(5), 1402–1419. https://doi.org/10.3390/ijerph8051402.

    CAS  Article  Google Scholar 

  11. Dube, F., Nhapi, I., Murwira, A., Gumindoga, W., Goldin, J., & Mashauri, D. A. (2014). Potential of weight of evidence modelling for gully erosion hazard assessment in Mbire District—Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C, 67–69, 145–152. https://doi.org/10.1016/j.pce.2014.02.002.

    Article  Google Scholar 

  12. Dunstan, W. R., & Magazini, I. (1980). Outbreaks and new records. Tanzania. The larger grain borer on stored products. FAO Plant Protection Bulletin, 29, 80–81.

    Google Scholar 

  13. Ekpa, O., Palacios-Rojas, N., Kruseman, G., Fogliano, V., & Linnemann, A. R. (2018). Sub-Saharan African maize-based foods: Technological perspectives to increase the food and nutrition security impacts of maize breeding programmes. Global Food Security, 17, 48–56. https://doi.org/10.1016/j.gfs.2018.03.007.

    Article  Google Scholar 

  14. Gadzirayi, C. T., Mutandwa, E., & Mupangwa, J. F. (2007). Veld condition trend of grazing areas: Why poor livestock production in the tropics? Rangelands, 29(1), 17–21. https://doi.org/10.2111/1551-501X(2007)29%5b17:VCTOGA%5d2.0.CO;2.

    Article  Google Scholar 

  15. Giga, D. P., & Mazarura, U. W. (1991). Levels of resistance to the maize weevil, sitophilus zeamais (motsch.) in exotic, local open-pollinated and hybrid maize germplasm. International Journal of Tropical Insect Science, 12(1), 159–169. https://doi.org/10.1017/S1742758400020646.

    Article  Google Scholar 

  16. GMB. (2017). Quality of grain delivered to grain marketing board. Harare, Zimbabwe: Grain Marketing Board.

    Google Scholar 

  17. Golob, P., Changjaroen, P., Ahmed, A., & Cox, J. (1985). Susceptibility of prostephanus truncatus (horn) (coleoptera: bostrichidae) to insecticides. Journal of Stored Products Research. https://doi.org/10.1016/0022-474X(85)90008-6.

  18. Harnish, R., & Krall, S. (1984). Further distribution of the larger grain borer in Africa. FAO Plant Protection Bulletin, 32(3), 113–114.

    Google Scholar 

  19. IPCC. (2014). Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change (pp. 3–87). Intergovernmental Panel on Climate Change. https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf.

  20. Jiri, O., Mafongoya, P. L., & Chivenge, P. (2015). Indigenous knowledge systems, seasonal “quality” and climate change adaptation in Zimbabwe. Climate Research, 66(2), 103–111. https://doi.org/10.3354/cr01334.

    Article  Google Scholar 

  21. Kapuya, T., Saruchera, D., Jongwe, A., Mucheri, T., Mujeyi, K., Traub, L., et al. (2010). The grain industry value chain in Zimbabwe. Technical report. https://doi.org/10.13140/2.1.4791.6325.

  22. Karuppaiah, V., & Sujayanad, G. K. (2012). Impact of climate change on population dynamics of insect pests. World Journal of Agricultural Sciences, 8, 240–246.

    Google Scholar 

  23. Kasambala, T., Chinwada, P., & Mvumi, B. (2012). Evaluation of the susceptibility of maize hybrid Varieties to Prostephanus truncatus (Bostrichidae: Coleoptera) in Malawi. Presented at the national commission for science and technology research dissemination, Lilongwe, Malawi. https://www.researchgate.net/publication/255696406_Evaluation_of_the_Susceptibility_of_Maize_Hybrid_Varieties_to_Prostephanus_truncatus_Bostrichidae_Coleoptera_in_Malawi.

  24. Katanha, A., & Chigunwe, G. (2014). Climate change adaptation challenges in semi-arid region of Dande Valley in Zimbabwe. International Journal of Science and Research, 3(7), 633–640.

    Google Scholar 

  25. Kossou, D. K., Mareck, J. H., & Bosque-Pérez, N. A. (1993). Comparison of improved and local maize varieties in the Republic of Benin with emphasis on susceptibility to Sitophilus zeamais Motschulsky. Journal of Stored Products Research, 29(4), 333–343.

    Article  Google Scholar 

  26. Kpolovie, P. (2017). Statistical analysis with SPSS for research (first.). UK: European Centre for Research Training and Development. https://www.researchgate.net/publication/319981226_statistical_analysis_with_SPSS_for_research.

  27. Liu, J., & Schelar, E. (2012). Pesticide exposure and child neurodevelopment. Workplace Health and Safety, 60(5), 235–242. https://doi.org/10.1177/216507991206000507.

    Article  Google Scholar 

  28. Macdonald, S. (2003). Winter cricket: The spirit of Wedza; a collection of biographies, articles, memories and recollections. Harare: Conlon Printers.

    Google Scholar 

  29. Mapfumo, P., Chikowo, R., & Mtambanengwe, F. (2010). Lack of resilience in African smallholder farming: Exploring measures to enhance the adaptive capacity of local communities to pressure climate change : final technical reportZimbabwe (October 2010). https://idl-bnc-idrc.dspacedirect.org/handle/10625/46032. Retrieved February 21, 2019.

  30. Ministry of Environment and Natural Resources Management. (2013). Zimbabwe national climate change response strategy. International Journal of Scientific and Technology, 2(8). http://www.cytel.com/hubfs/0-library-0/pdfs/SP07.pdf. Retrieved June 20, 2017.

  31. Mlambo, S., Mvumi, B. M., Stathers, T., Mubayiwa, M., & Nyabako, T. (2017). Field efficacy of hermetic and other maize grain storage options under smallholder farmer management. Crop Protection, 98, 198–210. https://doi.org/10.1016/j.cropro.2017.04.001.

    Article  Google Scholar 

  32. Mlambo, S., Mvumi, B. M., Stathers, T., Mubayiwa, M., & Nyabako, T. (2018). Field efficacy and persistence of synthetic pesticidal dusts on stored maize grain under contrasting agro-climatic conditions. Journal of Stored Products Research, 76, 129–139. https://doi.org/10.1016/j.jspr.2018.01.009.

    Article  Google Scholar 

  33. Moses, J. A., Jayas, D. S., & Alagusundaram, K. (2015). Climate change and its implications on stored food grains. Agricultural Research, 4(1), 21–30. https://doi.org/10.1007/s40003-015-0152-z.

    CAS  Article  Google Scholar 

  34. Moyo, M., Mvumi, B. M., Kunzekweguta, M., Mazvimavi, K., & Craufurd, P. (2012). Farmer perceptions on climate change and variability in semi-arid Zimbabwe in relation to climatology evidence. African Crop Science Journal, 20, 317–335.

    Google Scholar 

  35. Muatinte, B., Boukouvala, M., García-Lara, S., & López-Castillo, L. M. (2019). The threat of the larger grain borer, Prostephanus truncatus (Coleoptera: Bostrichidae) and practical control options for the pest. CAB Reviews Perspectives in Agriculture Veterinary Science Nutrition and Natural Resources, 14, 1–25.

    Article  Google Scholar 

  36. Muatinte, B. L., Van Den Berg, J., & Santos, L. A. (2014). Prostephanus truncatus in Africa : A review of biological trends and perspectives on future pest management Strategies. African Crop Science Journal, 22(3), 237–256.

    Google Scholar 

  37. Mubaya, C. P., Njuki, J., Mutsvangwa, E. P., Mugabe, F. T., & Nanja, D. (2012). Climate variability and change or multiple stressors? Farmer perceptions regarding threats to livelihoods in Zimbabwe and Zambia. Journal of Environmental Management, 102, 9–17. https://doi.org/10.1016/j.jenvman.2012.02.005.

    Article  Google Scholar 

  38. Mubayiwa, M., Mvumi, B. M., Stathers, T. E., Mlambo, S., & Nyabako, T. (2018). Blanket application rates for synthetic grain protectants across agro-climatic zones: Do they work? Evidence from field efficacy trials using sorghum grain. Crop Protection, 109, 51–61. https://doi.org/10.1016/j.cropro.2018.01.016.

    CAS  Article  Google Scholar 

  39. Mubayiwa, M. (2019). Smallholder postharvest technologies to manage climate-related risks in selected sorghum production systems. MPhil. Thesis. Department of Soil Science and Agricultural Engineering, Faculty of Agriculture, University of Zimbabwe, Harare, Zimbabwe.

  40. Mugandani, R., Wuta, M., Makarau, A., & Chipindu, B. (2012). Re-classification of agro-ecological regions of Zimbabwe in conformity with climate variability and change. African Crop Science Journal, 20(2), 361–369.

    Google Scholar 

  41. Mvumi, B. M., Giga, D. P., & Chiuswa, D. V. (1995). The maize (Zea mays L.) post-production practices of smallholder farmers in Zimbabwe: findings from surveys. Journal of Applied Science in Southern Africa, 1(2), 115–130.

    Google Scholar 

  42. Mvumi, B. M., & Stathers, T. E. (2014). Food security challenges in Sub-Saharan Africa: The potential contribution of postharvest skills, science and technology in closing the gap. In Proceedings of the 11th international working conference on stored-product protection (pp. 33–43). Presented at the 11th international working conference on stored-product protection, Chiang Mai, Thailand. https://doi.org/10.14455/DOA.res.2014.7.

  43. Nang’ayo, F. L. O., Hill, M. G., & Wright, D. J. (2002). Potential hosts of Prostephanus truncatus (Coleoptera: Bostrichidae) among native and agroforestry trees in Kenya. Bulletin of Entomological Research, 92(6), 499–506. https://doi.org/10.1079/BER2002202.

    Article  Google Scholar 

  44. Nangombe, S. S. (2014). Drought conditions and management strategies in Zimbabwe. Meteorological Services Department, Harare, Zimbabwe. http://www.droughtmanagement.info/literature/UNW-DPC_NDMP_Country_Report_Zimbabwe_2014.pdf. Retrieved December 29, 2017.

  45. Neven, L. G. (2000). Physiological responses of insects to heat. Postharvest Biology and Technology, 21(1), 103–111. https://doi.org/10.1016/S0925-5214(00)00169-1.

    CAS  Article  Google Scholar 

  46. Nhemachena, C., & Hassan, R. (2007). Micro-level analysis of farmers’ adaptation to climate change in southern Africa (No. 714) (p. 30). Washington, DC: International Food Policy Research Institute (IFPRI) Centre for Environmental Economics and Policy in Africa (CEEPA). http://www.ifpri.org/publication/micro-level-analysis-farmers-adaptation-climate-change-southern-africa. Retrieved February 21, 2019.

  47. Nyabako, T., & Manzungu, E. (2012). An assessment of the adaptability to climate change of commercially available maize varieties in Zimbabwe. Environment and Natural Resources Research, 2(1), 32. https://doi.org/10.5539/enrr.v2n1p32.

    Article  Google Scholar 

  48. Nyagwaya, L. D. M., Mvumi, B. M., & Saunyama, I. G. M. (2010). Occurrence and distribution of Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) in Zimbabwe. International Journal of Tropical Insect Science, 30(4), 221–231. https://doi.org/10.1017/S1742758410000342.

    Article  Google Scholar 

  49. Nyamapfene, K. W. (1985). Distribution and management of some problem soils of Zimbabwe. FAO world resource bulletin no 58.

  50. Nyanga, P., Johnsen, F., Aune, J., & Kalinda, T. (2011). Smallholder farmers’ perceptions of climate change and conservation agriculture: Evidence from Zambia. Journal of Sustainable Development, 4(4), p73. https://doi.org/10.5539/jsd.v4n4p73.

    Article  Google Scholar 

  51. Nyong, A., Adesina, F., & Osman Elasha, B. (2007). The value of indigenous knowledge in climate change mitigation and adaptation strategies in the African Sahel. Mitigation and Adaptation Strategies for Global Change, 12(5), 787–797. https://doi.org/10.1007/s11027-007-9099-0.

    Article  Google Scholar 

  52. Patt, A., & Gwata, C. (2002). Effective seasonal climate forecast applications: Examining constraints for subsistence farmers in Zimbabwe. Global Environmental Change, 12(3), 185–195. https://doi.org/10.1016/S0959-3780(02)00013-4.

    Article  Google Scholar 

  53. Rembold, F., Hodges, R., Bernard, M., Knipschild, H., & Léo, O. (2011). The African Postharvest Losses Information System (APHLIS) (EUR—Scientific and Technical Research Reports). Luxembourg: Publications Office of the European Union. http://publications.jrc.ec.europa.eu/repository/bitstream/JRC62618/lbna24712enc.pdf.

  54. Rozman, V., Kalinovic, I., & Korunic, Z. (2007). Toxicity of naturally occurring compounds of Lamiaceae and Lauraceae to three stored-product insects. Journal of Stored Products Research, 43(4), 349–355. https://doi.org/10.1016/j.jspr.2006.09.001.

    CAS  Article  Google Scholar 

  55. Rurinda, J., van Wijk, M. T., Mapfumo, P., Descheemaeker, K., Supit, I., & Giller, K. E. (2015). Climate change and maize yield in southern Africa: what can farm management do? Global Change Biology, 21(12), 4588–4601. https://doi.org/10.1111/gcb.13061.

    Article  Google Scholar 

  56. Saungweme, T. (2013). Trade dynamics in Zimbabwe: 1980–2012. International Journal of Economics and Research, 4, 29–38.

    Google Scholar 

  57. Sharma, H. C. (2014). Climate change effects on insects: Implications for crop protection and food security. Journal of Crop Improvement, 28(2), 229–259. https://doi.org/10.1080/15427528.2014.881205.

    CAS  Article  Google Scholar 

  58. Sharma, H. C., & Prabhakar, C. S. (2014). Chapter 2: Impact of climate change on pest management and food security. Integrated Pest Management, 10, 23–36. https://doi.org/10.1016/B978-0-12-398529-3.00003-8.

    Article  Google Scholar 

  59. Stathers, T. E., Arnold, S. E. J., Rumney, C. J., & Hopson, C. (2020). Measuring the nutritional cost of insect infestation of stored maize and cowpea. Food Security, 12(2), 285–308. https://doi.org/10.1007/s12571-019-00997-w.

    Article  Google Scholar 

  60. Stathers, T., Lamboll, R., & Mvumi, B. M. (2013). Postharvest agriculture in changing climates: its importance to African smallholder farmers. Food Security, 5(3), 361–392. https://doi.org/10.1007/s12571-013-0262-z.

    Article  Google Scholar 

  61. Stevenson, P. C., Arnold, S. E. J., & Belmain, S. R. (2014). Pesticidal plants for stored product pests on small-holder farms in Africa. In Pesticidal plants for stored product pests on small-holder farms in Africa (pp. 149–172). Springer. https://www.academia.edu/9467141/Pesticidal_Plants_for_Stored_Product_Pests_on_Small-holder_Farms_in_Africa. Retrieved February 21, 2019.

  62. Tefera, T. (2012). Postharvest losses in African maize in the face of increasing food shortage. Food Security, 4, 267–277.

    Article  Google Scholar 

  63. Thornton, P. K., Ericksen, P. J., Herrero, M., & Challinor, A. J. (2014). Climate variability and vulnerability to climate change: A review. Global Change Biology, 20(11), 3313–3328. https://doi.org/10.1111/gcb.12581.

    Article  Google Scholar 

  64. Vincent, V., Thomas, R. G., & Staples, R. R. (1960). An agricultural survey of Southern Rhodesia. Part 1. Agro-ecological survey. Salisbury (S. Rhodesia): Government Printers. https://www.cabdirect.org/cabdirect/abstract/19621701163. Retrieved February 21, 2019.

  65. Willmer, P., Stone, G., & Johnston, I. (2005). Environmental physiology of animals. Oxford: Wiley.

    Google Scholar 

  66. Wuta, M., & Nyamugafata, P. (2012). Management of cattle and goat manure in Wedza smallholder farming area, Zimbabwe. African Journal of Agricultural Research, 7(26), 3853–3859. https://doi.org/10.5897/AJAR12.038.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the European Union (EU) for funding the research project “Supporting smallholder farmers in southern Africa to better manage climate-related risks to crop production and postharvest handling” through the Food and Agriculture Organization (FAO) (Grant No. DCI-FOOD/2012/304-807). Our gratitude is also extended to the respondent farmers and national extension services for their cooperation, contributions and active participation during the study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Brighton M. Mvumi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nyabako, T., Mvumi, B.M., Stathers, T. et al. Smallholder grain postharvest management in a variable climate: practices and perceptions of smallholder farmers and their service-providers in semi-arid areas. Environ Dev Sustain 23, 9196–9222 (2021). https://doi.org/10.1007/s10668-020-01019-y

Download citation

Keywords

  • Storage pest management
  • Smallholder grain storage
  • Climate change impacts
  • Postharvest management policy dialogue