Skip to main content

Advertisement

Log in

Adoption of phytodesalination as a sustainable agricultural practice for improving the productivity of saline soils

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Due to the strong impact of soil salination on the productivity of crops, the implementation of sustainable agricultural practices (SAPs) such as phytodesalination is intended to reverse its effects. While this practice is used in most Middle Eastern countries, Mexico has just begun envisaging its benefits and potential. This study evaluated factors promoting the adoption of phytodesalination among agricultural producers based on the municipality of Villamar, Mexico. Two hundred forty-five semistructured surveys were designed and applied to farmers who participated in various events to disseminate the practice of phytodesalination. Information was gathered on the socioeconomic/demographic characteristics and affectation levels of their parcels due to the effects of salinity. Through a logistic regression using Lasso restriction, the factors influencing the farmers’ decisions to adopt phytodesalination in their specific productive models were evaluated. The results show that more than 87% of the surveyed farmers are male, that their average age is 52 years, that more than 82% have at most an elementary or high school education, that the average plot size in the study area is roughly 4 ha, that more than 76% of the farmers are native to the area and that approximately of 84% use their production exclusively for sales. According to the model employed [prediction of 90% and AUC (area under the curve) of 0.97], the surveyed farmers are mostly influenced by institutional (advice on implementing desalination), organizational (skills and competencies to spread halophyte species in accordance with parcel length and access to halophyte plants) and economic (time to implement phytodesalination) factors. The promotion of this approach and commitment of the region’s various institutions are recommended so that farmers can extend their knowledge of SAPs through a comprehensive strategic approach that allows them to address their specific challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adesina, A. A., & Chianu, J. (2002). Determinants of farmers’ adoption and adaptation of alley farming technology in Nigeria. Agroforestry Systems, 55(2), 99–112. https://doi.org/10.1023/A:1020556132073.

    Article  Google Scholar 

  • Akudugu, M. A., Guo, E., & Dadzie, S. K. (2012). Adoption of modern agricultural production technologies by farm households in Ghana: What factors influence their decisions? Journal of Biology, Agriculture and Healthcare, 2(3), 1–13.

    Google Scholar 

  • Alston, J. M., Norton, G. W., & Pardey, P. G. (1995). Science under scarcity: Principles and practice of agricultural research evaluation and priority setting. Ithaca: Cornell University Press.

    Google Scholar 

  • Arbuckle, J. G., & Roesch-McNally, G. (2015). Cover crop adoption in Iowa: The role of perceived practice characteristics. Journal of Soil and Water Conservation, 70(6), 418–429. https://doi.org/10.2489/jswc.70.6.418.

    Article  Google Scholar 

  • Asafu-Adjaye, J. (2008). Factors affecting the adoption of soil conservation measures: A case study of Fijian cane farmers. Journal of Agricultural and Resource Economics, 33, 99–117.

    Google Scholar 

  • Awotide, B., Diagne, A., Wiredu, A., & Ojehomon, V. (2012). Wealth status and agricultural technology adoption among smallholder rice farmers in Nigeria. OIDA International Journal of Sustainable Development, 5(2), 97–108.

    Google Scholar 

  • Batte, M. T., Dick, W. A., Fausey, N. R., Flanagan, D. C., Gonzalez, J. M., Islam, R., et al. (2018). Cover crops and gypsum applications: Soybean and corn yield and profitability impacts. The Journal of the ASFMRA, 2018, 43–67.

    Google Scholar 

  • Baudron, F., Mwanza, H. M., Triomphe, B., & Bwalya, M. (2007). Conservation agriculture in Zambia: A case study of Southern Province. Rome: FAO.

    Google Scholar 

  • Beke, T. E. (2011). Institutional constraints and adoption of improved rice varieties: Econometric evidence from Ivory Coast. Revue d’Etudes en Agriculture et Environnement-Review of agricultural and environmental Studies, 92, 117–141. https://doi.org/10.22004/ag.econ.188238.

  • Benin, S., Mogues, T., Cudjoe, G., & Randriamamonjy, J. (2009, August). Public expenditures and agricultural productivity growth in Ghana. In International association of agricultural economists 2009 conference (pp. 16–22).

  • Bidak, L. M., Kamal, S. A., Halmy, M. W. A., & Heneidy, S. Z. (2015). Goods and services provided by native plants in desert ecosystems: Examples from the northwestern coastal desert of Egypt. Global Ecology and Conservation, 3, 433–447.

    Article  Google Scholar 

  • Blanco-Valdés, Y. (2016). El rol de las arvenses como componente en la biodiversidad de los agroecosistemas. Cultivos Tropicales, 37(4), 34–56.

    Google Scholar 

  • Burgos, K. E. R. (2012). Investigación cuantitativa: Diseño, técnicas, muestreo y análisis cuantitativo. Metodología para investigaciones de alto impacto en las ciencias sociales, 153.

  • Burton, R. J. (2014). The influence of farmer demographic characteristics on environmental behaviour: A review. Journal of Environmental Management, 135, 19–26. https://doi.org/10.1016/j.jenvman.2013.12.005.

    Article  Google Scholar 

  • Chalak, A., Irani, A., Chaaban, J., Bashour, I., Seyfert, K., Smoot, K., et al. (2017). Farmers’ willingness to adopt conservation agriculture: New evidence from Lebanon. Environmental Management, 60(4), 693–704. https://doi.org/10.1007/s00267-017-0904-6.

    Article  Google Scholar 

  • Chander, P., & Thangavelu, S. M. (2004). Technology adoption, education and immigration policy. Journal of Development Economics, 75(1), 79–94. https://doi.org/10.1016/j.jdeveco.2003.07.006.

    Article  Google Scholar 

  • Corwin, D. L., Rhoades, J. D., & Šimůnek, J. (2007). Leaching requirement for soil salinity control: Steady-state versus transient models. Agricultural Water Management, 90(3), 165–180. https://doi.org/10.1016/j.agwat.2007.02.007.

    Article  Google Scholar 

  • Damian-Huato, M. Á., Romero-Arenas, O., Ramirez-Valverde, B., López-Reyes, L., Parraguirre-Lezama, C., & Cruz-León, A. (2014). Agricultura familiar y seguridad alimentaria entre productores de maíz de temporal en México. Agroecología, 9(1y2), 89–99.

  • Doss, C. R. (2006). Analyzing technology adoption using microstudies: Limitations, challenges, and opportunities for improvement. Agricultural Economics, 34(3), 207–219. https://doi.org/10.1111/j.1574-0864.2006.00119.x.

    Article  Google Scholar 

  • Estudios Agrarios. (2010). Características básicas de los núcleos agrarios certificados. Revista Estudios Agrarios, 16(45), 165–188.

    Google Scholar 

  • Fauvelle, M., Esch, E., & Somerville, A. (2017). Climate change and subsistence exchange in southern california: Was western sea-purslane a channel island trade good? American Antiquity, 82(1), 183–188.

    Article  Google Scholar 

  • Flores-Olvera, H., Czaja, A., Estrada-Rodríguez, J. L., & Méndez, U. R. (2016). Floristic diversity of halophytic plants of Mexico. In M. Khan, B. Boër, M. Ȫzturk, M. Clüsener-Godt, B. Gul, & S. W. Breckle (Eds.), Sabkha ecosystems. Tasks for vegetation science (Vol. 48). Cham: Springer. https://doi.org/10.1007/978-3-319-27093-7_17.

    Chapter  Google Scholar 

  • Franzel, S. (1999). Socioeconomic factors affecting the adoption potential of improved tree fallows in Africa. Agroforestry Systems, 47(1–3), 305–321. https://doi.org/10.1023/A:1006292119954.

    Article  Google Scholar 

  • Gairola, S., Bhatt, A., & El-Keblawy, A. (2015). A perspective on potential use of halophytes for reclamation of salt-affected lands. Wulfenia, 22(1), 88–97.

    Google Scholar 

  • Greene, W. H. (2008). Econometric analysis (6th ed.). Upper Saddle River, NJ: Prentice-Hall, New York University.

    Google Scholar 

  • Haghjou, M., Hayati, B., & Momeni Choleki, D. (2014). Identification of factors affecting adoption of soil conservation practices by some rainfed farmers in Iran. Journal of Agricultural Science and Technology, 16(5), 957–967.

    Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Bhowmik, P. C., Hossain, M. A., Rahman, M. M., et al. (2014). Potential use of halophytes to remediate saline soils. BioMed Research International, 2014, 1–12. https://doi.org/10.1155/2014/589341.

    Article  Google Scholar 

  • Hill, L., & Kau, P. (1973). Application of multivariate probit to a threshold model of grain dryer purchasing decisions. American Journal of Agricultural Economics, 55, 19–27.

    Article  Google Scholar 

  • INEGI. (2014a). Conjunto de datos vectoriales edafológico, escala 1:250000 Serie II. (Continuo Nacional)’, escala: 1:250000. Edición: 2. Instituto Nacional de Estadística y Geografía. Aguascalientes, Ags., México.

  • INEGI. (2014b) Encuesta Nacional Agropecuaria (ENA). Conociendo al campo de México. Resultados. Levantamiento del 16 de octubre al 28 de noviembre de 2014, http://www.inegi.org.mx/geo/contenidos/recnat/edafologia/vectorial_serieii.aspx.

  • James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning with applications in R. Berlin: Springer.

    Book  Google Scholar 

  • Jensen, L. P., Picozzi, K., de Almeida, O. D. C. M., da Costa, M. D. J., Spyckerelle, L., & Erskine, W. (2014). Social relationships impact adoption of agricultural technologies: The case of food crop varieties in Timor–Leste. Food Security, 6(3), 397–409. https://doi.org/10.1007/s12571-014-0345-5.

    Article  Google Scholar 

  • Kannan, E., & Ramappa, K. B. (2017). Analysis of farm-level adoption of soil nutrient management technology by paddy farmers in Karnataka, India. Environment, Development and Sustainability, 19(6), 2317–2331. https://doi.org/10.1007/s10668-016-9858-8.

    Article  Google Scholar 

  • Kassie, M., Jaleta, M., Shiferaw, B., Mmbando, F., & Mekuria, M. (2013). Adoption of interrelated sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania. Technological Forecasting and Social Change, 80(3), 525–540. https://doi.org/10.1016/j.techfore.2012.08.007.

    Article  Google Scholar 

  • Kassie, M., Zikhali, P., Manjur, K., & Edwards, S. (2009). Adoption of sustainable agriculture practices: Evidence from a semi-arid region of Ethiopia. Natural Resources Forum, 33(3), 189–198. https://doi.org/10.1111/j.1477-8947.2009.01224.x.

    Article  Google Scholar 

  • Knowler, D., & Bradshaw, B. (2007). Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy, 32(1), 25–48. https://doi.org/10.1016/j.foodpol.2006.01.003.

    Article  Google Scholar 

  • Lambrecht, I., Vanlauwe, B., Merckx, R., & Maertens, M. (2014). Understanding the process of agricultural technology adoption: Mineral fertilizer in Eastern DR Congo. World Development, 59, 132–146.

    Article  Google Scholar 

  • Lastiri-Hernández, M. A., Álvarez-Bernal, D., Ochoa-Estrada, S., & Contreras-Ramos, S. M. (2019) Potential of Bacopa monnieri (L.) Wettst and Sesuvium verrucosum Raf. as an agronomic management alternative to recover the productivity of saline soils. International Journal of Phytoremediation. https://doi.org/10.1080/15226514.2019.1663484.

  • Lee, D. R. (2005). Agricultural sustainability and technology adoption: Issues and policies for developing countries. American Journal of Agricultural Economics, 87(5), 1325–1334. https://doi.org/10.1111/j.1467-8276.2005.00826.x.

    Article  Google Scholar 

  • Loeza Lara, P. D., Ramírez Sánchez, R. D., & Reyes Téllez, M. A. (2015). La Ciénaga de Chapala, Michoacán: Cambios y permanencias en la construcción regional. Relaciones Estudios de Historia y Sociedad, 36(142), 237–259.

    Article  Google Scholar 

  • Luloff, A., Finley, J., Myers, W., Metcalf, A., Matarrita, D., Gordon, J. S., et al. (2011). What do stakeholders add to identification of conservation lands? Society and Natural Resources, 24(12), 1345–1353. https://doi.org/10.1080/08941920.2011.589098.

    Article  Google Scholar 

  • Mabuza, M. L., Sithole, M. M., Wale, E., Ortmann, G. F., & Darroch, M. A. G. (2013). Factors influencing the use of alternative land cultivation technologies in Swaziland: Implications for smallholder farming on customary Swazi Nation Land. Land Use Policy, 33, 71–80. https://doi.org/10.1016/j.landusepol.2012.12.009.

    Article  Google Scholar 

  • Manzano Banda, J. I., Rivera Ortiz, P., Briones Encinia, F., & Zamora Tovar, C. (2014). Rehabilitación de suelos salino-sódicos: Estudio de caso en el distrito de riego 086, Jiménez, Tamaulipas, México. Terra Latinoamericana, 32(3), 211–219.

    Google Scholar 

  • Munns, R., & Tester, M. (2008). Mechanisms of tolerance to salinity. Annual Review Plant Biology, 59, 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911.

    Article  CAS  Google Scholar 

  • Nelson, V., & Phillips, D. (2018). Sector, landscape or rural transformations? Exploring the limits and potential of agricultural sustainability initiatives through a cocoa case study. Business Strategy and the Environment, 27(2), 252–262. https://doi.org/10.1002/bse.2014.

    Article  Google Scholar 

  • Nikalje, G. C., Srivastava, A. K., Pandey, G. K., & Suprasanna, P. (2018). Halophytes in biosaline agriculture: Mechanism, utilization, and value addition. Land Degradation and Development, 29(4), 1081–1095. https://doi.org/10.1002/ldr.2819.

    Article  Google Scholar 

  • Nkamleu, G. B., & Adesina, A. A. (2000). Determinants of chemical input use in peri-urban lowland systems: Bivariate probit analysis in Cameroon. Agricultural Systems, 63(2), 111–121. https://doi.org/10.1016/S0308-521X(99)00074-8.

    Article  Google Scholar 

  • Nouri, H., Borujeni, S. C., Nirola, R., Hassanli, A., Beecham, S., Alaghmand, S., et al. (2017). Application of green remediation on soil salinity treatment: A review on halophytoremediation. Process Safety and Environmental Protection, 107, 94–107. https://doi.org/10.1016/j.psep.2017.01.021.

    Article  CAS  Google Scholar 

  • Okoedo-Okojie, D. U., & Onemolease, E. A. (2009). Factors affecting the adoption of yam storage technologies in the Northern Ecological zone of Edo State, Nigeria. Journal of Human Ecology, 27(2), 155–160. https://doi.org/10.1080/09709274.2009.11906205.

    Article  Google Scholar 

  • Orozco Cirilo, S., Ramírez Valverde, B., Ariza Flores, R., Jiménez Sánchez, L., Estrella Chulim, N., Peña Olvera, B. V., et al. (2009). Impacto del conocimiento tecnológico sobre la adopción de tecnología agrícola en campesinos indígenas de México. Interciencia, 34(8), 551–555.

    Google Scholar 

  • Pannell, D. J., Llewellyn, R. S., & Corbeels, M. (2014). The farm-level economics of conservation agriculture for resource-poor farmers. Agriculture, Ecosystems and Environment, 187, 52–64. https://doi.org/10.1016/j.agee.2013.10.014.

    Article  Google Scholar 

  • Paudel, P., & Matsuoka, A. (2008). Factors influencing adoption of improved maize varieties in Nepal: A case study of Chitwan District. Australian Journal of Basic and Applied Sciences, 2(4), 823–834.

    Google Scholar 

  • Phondani, P. C., Bhatt, A., Elsarrag, E., Alhorr, Y. M., & El-Keblawy, A. (2016). Criteria and indicator approach of global sustainability assessment system for sustainable landscaping using native plants in Qatar. Ecological Indicators, 69, 381–389.

    Article  Google Scholar 

  • Pindyck, S., & Rubinfeld, L. (1998). Economentric models and economic forecasts. United States of America: McGraw-Hill Inc.

    Google Scholar 

  • Qadir, M., Noble, A. D., Oster, J. D., Schubert, S., & Ghafoor, A. (2005). Driving forces for sodium removal during phytoremediation of calcareous sodic and saline-sodic soils: A review. Soil Use and Management, 21(2), 173–180. https://doi.org/10.1111/j.1475-2743.2005.tb00122.x.

    Article  Google Scholar 

  • Qadir, M., & Oster, J. (2002). Vegetative bioremediation of calcareous sodic soils: History, mechanisms, and evaluation. Irrigation Science, 21(3), 91–101. https://doi.org/10.1007/s00271-001-0055-6.

    Article  Google Scholar 

  • R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org.

  • Radel, C., Schmook, B., McEvoy, J., Mendez, C., & Petrzelka, P. (2012). Labour migration and gendered agricultural relations: The feminization of agriculture in the ejidal sector of Calakmul, Mexico. Journal of Agrarian Change, 12(1), 98–119. https://doi.org/10.1111/j.1471-0366.2011.00336.x.

    Article  Google Scholar 

  • Rogers, E. (1983). The diffusion of innovation (3rd ed.). New York: The Free Press.

    Google Scholar 

  • Sandoval Moreno, A., & Paleta Pérez, G. (2015). La conformación de una región productiva contenciosa: El Distrito de Riego 024 Ciénega de Chapala, Michoacán, México. Desacatos, 47, 132–149.

    Google Scholar 

  • Shabala, S. N., & Mackay, A. (2011). Ion transport in halophytes. Advances in Botanical Research, 57, 151–199.

    Article  CAS  Google Scholar 

  • SIAP. (2016). Producción Agrícola. 26 October 2016. https://www.gob.mx/siap/acciones-y-programas/produccion-agricola-33119.

  • Silva-García, J. T., Ochoa-Estrada, S., Cristóbal-Acevedo, D., & Estrada-Godoy, F. (2006). Calidad química del agua subterránea de la Ciénega de Chapala como factor de degradación del suelo. Terra Latinoamericana, 24(4), 503–513.

    Google Scholar 

  • Singh, K. (2000). Education, technology adoption and agricultural productivity. Indian Journal of Agriculture Economics, 55(3), 475–489.

    Google Scholar 

  • SMN [Sistema Metereológico Nacional]. (2019). 23 May 2019. https://smn.conagua.gob.mx/es/informacion-climatologica-porestado?estado=mich.

  • Suvedi, M., Ghimire, R., & Kaplowitz, M. (2017). Revitalizing agricultural extension services in developing countries: Lessons from off-season vegetable production in rural Nepal. Journal of the International Society for Southeast Asian Agricultural Sciences, 23, 1–11.

    Google Scholar 

  • Theis, S., Lefore, N., Meinzen-Dick, R., & Bryan, E. (2018). What happens after technology adoption? Gendered aspects of small-scale irrigation technologies in Ethiopia, Ghana, and Tanzania. Agriculture and Human Values, 35, 671–684. https://doi.org/10.1007/s10460-018-9862-8.

    Article  Google Scholar 

  • Valsecchi, M. (2014). Land property rights and international migration: Evidence from Mexico. Journal of Development Economics, 110, 276–290. https://doi.org/10.1016/j.jdeveco.2014.01.010.

    Article  Google Scholar 

  • Vargas-Velázquez, S. (2010). Aspectos socioeconómicos de la agricultura de riego en la Cuenca Lerma-Chapala. Economía, Sociedad y Territorio, 10(32), 231–263.

    Google Scholar 

  • Vega, R. D. C. C. (2019). Susceptibilidad ambiental a la desertificación en la microcuenca del río Azumiatla, Puebla, México. Ecosistemas y Recursos Agropecuarios, 6(16), 91–101.

    Article  Google Scholar 

  • Ward, P. S., Bell, A. R., Droppelmann, K., & Benton, T. G. (2018). Early adoption of conservation agriculture practices: Understanding partial compliance in programs with multiple adoption decisions. Land Use Policy, 70, 27–37. https://doi.org/10.1016/j.landusepol.2017.10.001.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Consejo Nacional de Ciencia y Tecnología (CONACYT) for the funding of this work in the Grant PN-2015-01-1165 and SIP-IPN20196677, and the first author thanks CONACYT for the scholarship granted to carry out Ph.D. studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Álvarez-Bernal.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lastiri-Hernández, M.A., Álvarez-Bernal, D., Moncayo-Estrada, R. et al. Adoption of phytodesalination as a sustainable agricultural practice for improving the productivity of saline soils. Environ Dev Sustain 23, 8798–8814 (2021). https://doi.org/10.1007/s10668-020-00995-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00995-5

Keywords

Navigation